Optimal. Leaf size=30 \[ \left (1-\frac {x}{-\frac {\log (3)}{x}+\frac {\log (-e+2 x)}{\log (x)}}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 33.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (\left (4 e x^3-8 x^4\right ) \log (3)+\left (4 e x-8 x^2\right ) \log ^2(3)\right ) \log ^3(x)+\left (2 e x^3-4 x^4\right ) \log ^2(-e+2 x)+\log ^2(x) \left (-4 x^5-4 x^3 \log (3)+\left (-2 e x^4+4 x^5+\left (-6 e x^2+12 x^3\right ) \log (3)\right ) \log (-e+2 x)\right )+\log (x) \left (\left (4 x^4-2 e x^4+4 x^5+\left (-2 e x^2+4 x^3\right ) \log (3)\right ) \log (-e+2 x)+\left (2 e x^3-4 x^4\right ) \log ^2(-e+2 x)\right )}{(e-2 x) \log ^3(3) \log ^3(x)+\left (-3 e x+6 x^2\right ) \log ^2(3) \log ^2(x) \log (-e+2 x)+\left (3 e x^2-6 x^3\right ) \log (3) \log (x) \log ^2(-e+2 x)+\left (-e x^3+2 x^4\right ) \log ^3(-e+2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (\left (x^2+\log (3)\right ) \log (x)-x \log (-e+2 x)\right ) \left (-\left ((-e \log (9)+x \log (81)) \log ^2(x)\right )-(e-2 x) x \log (-e+2 x)-x \log (x) (2 x+(e-2 x) \log (-e+2 x))\right )}{(e-2 x) (\log (3) \log (x)-x \log (-e+2 x))^3} \, dx\\ &=2 \int \frac {x \left (\left (x^2+\log (3)\right ) \log (x)-x \log (-e+2 x)\right ) \left (-\left ((-e \log (9)+x \log (81)) \log ^2(x)\right )-(e-2 x) x \log (-e+2 x)-x \log (x) (2 x+(e-2 x) \log (-e+2 x))\right )}{(e-2 x) (\log (3) \log (x)-x \log (-e+2 x))^3} \, dx\\ &=2 \int \left (\frac {x \log (x) \left (-2 \left (1-\frac {e}{2}\right ) x^2-2 x^3-e \log (3)+x \log (9)+e x^2 \log (x)-2 x^3 \log (x)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{(e-2 x) (\log (3) \log (x)-x \log (-e+2 x))^2}-\frac {x^3 \log ^2(x) \left (-2 x^2-e \log (3)+x \log (9)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{(e-2 x) (-\log (3) \log (x)+x \log (-e+2 x))^3}-\frac {x (1+\log (x))}{-\log (3) \log (x)+x \log (-e+2 x)}\right ) \, dx\\ &=2 \int \frac {x \log (x) \left (-2 \left (1-\frac {e}{2}\right ) x^2-2 x^3-e \log (3)+x \log (9)+e x^2 \log (x)-2 x^3 \log (x)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{(e-2 x) (\log (3) \log (x)-x \log (-e+2 x))^2} \, dx-2 \int \frac {x^3 \log ^2(x) \left (-2 x^2-e \log (3)+x \log (9)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{(e-2 x) (-\log (3) \log (x)+x \log (-e+2 x))^3} \, dx-2 \int \frac {x (1+\log (x))}{-\log (3) \log (x)+x \log (-e+2 x)} \, dx\\ &=2 \int \left (\frac {e \log (x) \left (-2 \left (1-\frac {e}{2}\right ) x^2-2 x^3-e \log (3)+x \log (9)+e x^2 \log (x)-2 x^3 \log (x)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{2 (e-2 x) (\log (3) \log (x)-x \log (-e+2 x))^2}+\frac {\log (x) \left (2 \left (1-\frac {e}{2}\right ) x^2+2 x^3+e \log (3)-x \log (9)-e x^2 \log (x)+2 x^3 \log (x)-e \log (3) \log (x)+x \log (9) \log (x)\right )}{2 (\log (3) \log (x)-x \log (-e+2 x))^2}\right ) \, dx-2 \int \left (\frac {e^2 \log ^2(x) \left (-2 x^2-e \log (3)+x \log (9)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{8 (\log (3) \log (x)-x \log (-e+2 x))^3}+\frac {e x \log ^2(x) \left (-2 x^2-e \log (3)+x \log (9)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{4 (\log (3) \log (x)-x \log (-e+2 x))^3}-\frac {x^2 \log ^2(x) \left (2 x^2+e \log (3)-x \log (9)-e \log (3) \log (x)+x \log (9) \log (x)\right )}{2 (\log (3) \log (x)-x \log (-e+2 x))^3}+\frac {e^3 \log ^2(x) \left (-2 x^2-e \log (3)+x \log (9)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{8 (e-2 x) (-\log (3) \log (x)+x \log (-e+2 x))^3}\right ) \, dx-2 \int \left (\frac {x}{-\log (3) \log (x)+x \log (-e+2 x)}+\frac {x \log (x)}{-\log (3) \log (x)+x \log (-e+2 x)}\right ) \, dx\\ &=-\left (2 \int \frac {x}{-\log (3) \log (x)+x \log (-e+2 x)} \, dx\right )-2 \int \frac {x \log (x)}{-\log (3) \log (x)+x \log (-e+2 x)} \, dx-\frac {1}{2} e \int \frac {x \log ^2(x) \left (-2 x^2-e \log (3)+x \log (9)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{(\log (3) \log (x)-x \log (-e+2 x))^3} \, dx+e \int \frac {\log (x) \left (-2 \left (1-\frac {e}{2}\right ) x^2-2 x^3-e \log (3)+x \log (9)+e x^2 \log (x)-2 x^3 \log (x)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{(e-2 x) (\log (3) \log (x)-x \log (-e+2 x))^2} \, dx-\frac {1}{4} e^2 \int \frac {\log ^2(x) \left (-2 x^2-e \log (3)+x \log (9)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{(\log (3) \log (x)-x \log (-e+2 x))^3} \, dx-\frac {1}{4} e^3 \int \frac {\log ^2(x) \left (-2 x^2-e \log (3)+x \log (9)+e \log (3) \log (x)-x \log (9) \log (x)\right )}{(e-2 x) (-\log (3) \log (x)+x \log (-e+2 x))^3} \, dx+\int \frac {x^2 \log ^2(x) \left (2 x^2+e \log (3)-x \log (9)-e \log (3) \log (x)+x \log (9) \log (x)\right )}{(\log (3) \log (x)-x \log (-e+2 x))^3} \, dx+\int \frac {\log (x) \left (2 \left (1-\frac {e}{2}\right ) x^2+2 x^3+e \log (3)-x \log (9)-e x^2 \log (x)+2 x^3 \log (x)-e \log (3) \log (x)+x \log (9) \log (x)\right )}{(\log (3) \log (x)-x \log (-e+2 x))^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 1.08, size = 475, normalized size = 15.83 \begin {gather*} \frac {x^2 \log (x) \left (x^2 \log (x)-\frac {\left (2 \left (2 x^2+e \log (3)-x \log (9)\right )^3+\left (-e^3 \log (3) \left (2 \log ^2(3)+\log ^2(9)\right )+4 x^3 (x-\log (3)) \left (-4 \log ^2(3)-\log (9) \log (81)+x \log (531441)\right )-2 e x^2 \left (-x \left (16 \log ^2(3)+\log ^2(81)+\log (9) \log (6561)\right )+x^2 \left (-36 \log ^2(3)+\log (9) \log (729)+\log (81) \log (729)+\log (531441)\right )+\log ^2(3) \log (150094635296999121)\right )+e^2 x \left (-x \left (8 \log ^2(3)+\log (9) \log (6561)\right )+x^2 \left (-36 \log ^2(3)+\log (27) \log (81)+\log (9) \log (531441)\right )+\log ^2(3) \log (150094635296999121)\right )\right ) \log (x)+\left (4 x^3 \left (-4 \log ^2(3) \log (27)+x \left (-4 \log ^2(3)+\log ^2(81)\right )\right )+e^3 \log ^2(3) \log (729)+e^2 x \left (x \log (27) \log (81)+x^2 \left (-\log ^2(9)+\log (3) \log (81)\right )-4 \log ^2(3) \log (19683)\right )+2 e x^2 \left (x \left (8 \log ^2(3)-8 \log (3) \log (9)-\log ^2(81)\right )+4 \log ^2(3) \log (19683)\right )\right ) \log ^2(x)+\left (8 x^3 \log ^2(3) \log (9)+e^3 \left (-2 \log ^3(3)+x^2 \left (-4 \log ^2(3)+\log ^2(9)\right )\right )+e^2 x \log (3) \left (-12 \log ^2(3)+8 \log (3) \log (9)+\log (9) \log (81)\right )+e \left (-8 x^2 \log ^2(3) \log (27)+x^4 \left (-48 \log ^2(3)+10 \log (3) \log (81)+\log (9) \log (81)\right )\right )\right ) \log ^3(x)\right ) (-\log (3) \log (x)+x \log (-e+2 x))}{\left (2 x^2+e \log (3)-x \log (9)+(-e \log (3)+x \log (9)) \log (x)\right )^3}\right )}{(\log (3) \log (x)-x \log (-e+2 x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 79, normalized size = 2.63 \begin {gather*} -\frac {2 \, x^{3} \log \left (2 \, x - e\right ) \log \relax (x) - {\left (x^{4} + 2 \, x^{2} \log \relax (3)\right )} \log \relax (x)^{2}}{x^{2} \log \left (2 \, x - e\right )^{2} - 2 \, x \log \relax (3) \log \left (2 \, x - e\right ) \log \relax (x) + \log \relax (3)^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.11, size = 80, normalized size = 2.67 \begin {gather*} \frac {x^{4} \log \relax (x)^{2} - 2 \, x^{3} \log \left (2 \, x - e\right ) \log \relax (x) + 2 \, x^{2} \log \relax (3) \log \relax (x)^{2}}{x^{2} \log \left (2 \, x - e\right )^{2} - 2 \, x \log \relax (3) \log \left (2 \, x - e\right ) \log \relax (x) + \log \relax (3)^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 52, normalized size = 1.73
method | result | size |
risch | \(\frac {\left (x^{2} \ln \relax (x )+2 \ln \relax (3) \ln \relax (x )-2 \ln \left (-{\mathrm e}+2 x \right ) x \right ) x^{2} \ln \relax (x )}{\left (\ln \relax (3) \ln \relax (x )-\ln \left (-{\mathrm e}+2 x \right ) x \right )^{2}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.00, size = 79, normalized size = 2.63 \begin {gather*} -\frac {2 \, x^{3} \log \left (2 \, x - e\right ) \log \relax (x) - {\left (x^{4} + 2 \, x^{2} \log \relax (3)\right )} \log \relax (x)^{2}}{x^{2} \log \left (2 \, x - e\right )^{2} - 2 \, x \log \relax (3) \log \left (2 \, x - e\right ) \log \relax (x) + \log \relax (3)^{2} \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {\ln \relax (x)\,\left (\ln \left (2\,x-\mathrm {e}\right )\,\left (2\,x^4\,\mathrm {e}-4\,x^4-4\,x^5+\ln \relax (3)\,\left (2\,x^2\,\mathrm {e}-4\,x^3\right )\right )-{\ln \left (2\,x-\mathrm {e}\right )}^2\,\left (2\,x^3\,\mathrm {e}-4\,x^4\right )\right )-{\ln \left (2\,x-\mathrm {e}\right )}^2\,\left (2\,x^3\,\mathrm {e}-4\,x^4\right )+{\ln \relax (x)}^2\,\left (4\,x^3\,\ln \relax (3)+4\,x^5+\ln \left (2\,x-\mathrm {e}\right )\,\left (2\,x^4\,\mathrm {e}-4\,x^5+\ln \relax (3)\,\left (6\,x^2\,\mathrm {e}-12\,x^3\right )\right )\right )-{\ln \relax (x)}^3\,\left ({\ln \relax (3)}^2\,\left (4\,x\,\mathrm {e}-8\,x^2\right )+\ln \relax (3)\,\left (4\,x^3\,\mathrm {e}-8\,x^4\right )\right )}{\left (x^3\,\mathrm {e}-2\,x^4\right )\,{\ln \left (2\,x-\mathrm {e}\right )}^3-\ln \relax (3)\,\left (3\,x^2\,\mathrm {e}-6\,x^3\right )\,{\ln \left (2\,x-\mathrm {e}\right )}^2\,\ln \relax (x)+{\ln \relax (3)}^2\,\left (3\,x\,\mathrm {e}-6\,x^2\right )\,\ln \left (2\,x-\mathrm {e}\right )\,{\ln \relax (x)}^2+{\ln \relax (3)}^3\,\left (2\,x-\mathrm {e}\right )\,{\ln \relax (x)}^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.50, size = 80, normalized size = 2.67 \begin {gather*} \frac {x^{4} \log {\relax (x )}^{2} - 2 x^{3} \log {\relax (x )} \log {\left (2 x - e \right )} + 2 x^{2} \log {\relax (3 )} \log {\relax (x )}^{2}}{x^{2} \log {\left (2 x - e \right )}^{2} - 2 x \log {\relax (3 )} \log {\relax (x )} \log {\left (2 x - e \right )} + \log {\relax (3 )}^{2} \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________