Optimal. Leaf size=26 \[ 2-x^2 \left (x+x^2 \left (x-\log \left (\frac {2 x}{6+x}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 24, normalized size of antiderivative = 0.92, number of steps used = 7, number of rules used = 4, integrand size = 48, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {6742, 1620, 2492, 43} \begin {gather*} -x^5+x^4 \log \left (\frac {2 x}{x+6}\right )-x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 43
Rule 1620
Rule 2492
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {x^2 \left (18-3 x+30 x^2+5 x^3\right )}{6+x}+4 x^3 \log \left (\frac {2 x}{6+x}\right )\right ) \, dx\\ &=4 \int x^3 \log \left (\frac {2 x}{6+x}\right ) \, dx-\int \frac {x^2 \left (18-3 x+30 x^2+5 x^3\right )}{6+x} \, dx\\ &=x^4 \log \left (\frac {2 x}{6+x}\right )-6 \int \frac {x^3}{6+x} \, dx-\int \left (-216+36 x-3 x^2+5 x^4+\frac {1296}{6+x}\right ) \, dx\\ &=216 x-18 x^2+x^3-x^5+x^4 \log \left (\frac {2 x}{6+x}\right )-1296 \log (6+x)-6 \int \left (36-6 x+x^2-\frac {216}{6+x}\right ) \, dx\\ &=-x^3-x^5+x^4 \log \left (\frac {2 x}{6+x}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 24, normalized size = 0.92 \begin {gather*} -x^3-x^5+x^4 \log \left (\frac {2 x}{6+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 24, normalized size = 0.92 \begin {gather*} -x^{5} + x^{4} \log \left (\frac {2 \, x}{x + 6}\right ) - x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.70, size = 24, normalized size = 0.92 \begin {gather*} -x^{5} + x^{4} \log \left (\frac {2 \, x}{x + 6}\right ) - x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.26, size = 25, normalized size = 0.96
method | result | size |
norman | \(x^{4} \ln \left (\frac {2 x}{x +6}\right )-x^{3}-x^{5}\) | \(25\) |
risch | \(x^{4} \ln \left (\frac {2 x}{x +6}\right )-x^{3}-x^{5}\) | \(25\) |
derivativedivides | \(-\left (x +6\right )^{5}+2178 \left (x +6\right )^{2}-6588 x -39528-361 \left (x +6\right )^{3}+30 \left (x +6\right )^{4}-54 \ln \left (2-\frac {12}{x +6}\right ) \left (2-\frac {12}{x +6}\right ) \left (-\frac {12}{x +6}-2\right ) \left (x +6\right )^{2}-432 \ln \left (2-\frac {12}{x +6}\right ) \left (2-\frac {12}{x +6}\right ) \left (x +6\right )-3 \ln \left (2-\frac {12}{x +6}\right ) \left (2-\frac {12}{x +6}\right ) \left (\left (2-\frac {12}{x +6}\right )^{2}+\frac {72}{x +6}\right ) \left (x +6\right )^{3}-\frac {\ln \left (2-\frac {12}{x +6}\right ) \left (2-\frac {12}{x +6}\right ) \left (\left (2-\frac {12}{x +6}\right )^{3}-8 \left (2-\frac {12}{x +6}\right )^{2}-\frac {288}{x +6}+16\right ) \left (x +6\right )^{4}}{16}\) | \(197\) |
default | \(-\left (x +6\right )^{5}+2178 \left (x +6\right )^{2}-6588 x -39528-361 \left (x +6\right )^{3}+30 \left (x +6\right )^{4}-54 \ln \left (2-\frac {12}{x +6}\right ) \left (2-\frac {12}{x +6}\right ) \left (-\frac {12}{x +6}-2\right ) \left (x +6\right )^{2}-432 \ln \left (2-\frac {12}{x +6}\right ) \left (2-\frac {12}{x +6}\right ) \left (x +6\right )-3 \ln \left (2-\frac {12}{x +6}\right ) \left (2-\frac {12}{x +6}\right ) \left (\left (2-\frac {12}{x +6}\right )^{2}+\frac {72}{x +6}\right ) \left (x +6\right )^{3}-\frac {\ln \left (2-\frac {12}{x +6}\right ) \left (2-\frac {12}{x +6}\right ) \left (\left (2-\frac {12}{x +6}\right )^{3}-8 \left (2-\frac {12}{x +6}\right )^{2}-\frac {288}{x +6}+16\right ) \left (x +6\right )^{4}}{16}\) | \(197\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.93, size = 40, normalized size = 1.54 \begin {gather*} -x^{5} + x^{4} \log \relax (2) + x^{4} \log \relax (x) - x^{3} - {\left (x^{4} - 1296\right )} \log \left (x + 6\right ) - 1296 \, \log \left (x + 6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.64, size = 24, normalized size = 0.92 \begin {gather*} x^4\,\ln \left (\frac {2\,x}{x+6}\right )-x^3-x^5 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 17, normalized size = 0.65 \begin {gather*} - x^{5} + x^{4} \log {\left (\frac {2 x}{x + 6} \right )} - x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________