Optimal. Leaf size=13 \[ -\frac {e+\log (x)}{x^2 \log (x)} \]
________________________________________________________________________________________
Rubi [A] time = 0.18, antiderivative size = 16, normalized size of antiderivative = 1.23, number of steps used = 7, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {6742, 2306, 2309, 2178} \begin {gather*} -\frac {1}{x^2}-\frac {e}{x^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2178
Rule 2306
Rule 2309
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2}{x^3}+\frac {e}{x^3 \log ^2(x)}+\frac {2 e}{x^3 \log (x)}\right ) \, dx\\ &=-\frac {1}{x^2}+e \int \frac {1}{x^3 \log ^2(x)} \, dx+(2 e) \int \frac {1}{x^3 \log (x)} \, dx\\ &=-\frac {1}{x^2}-\frac {e}{x^2 \log (x)}-(2 e) \int \frac {1}{x^3 \log (x)} \, dx+(2 e) \operatorname {Subst}\left (\int \frac {e^{-2 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {1}{x^2}+2 e \text {Ei}(-2 \log (x))-\frac {e}{x^2 \log (x)}-(2 e) \operatorname {Subst}\left (\int \frac {e^{-2 x}}{x} \, dx,x,\log (x)\right )\\ &=-\frac {1}{x^2}-\frac {e}{x^2 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 16, normalized size = 1.23 \begin {gather*} -\frac {1}{x^2}-\frac {e}{x^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 14, normalized size = 1.08 \begin {gather*} -\frac {e + \log \relax (x)}{x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.78, size = 14, normalized size = 1.08 \begin {gather*} -\frac {e + \log \relax (x)}{x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 1.38
method | result | size |
risch | \(-\frac {1}{x^{2}}-\frac {{\mathrm e}}{x^{2} \ln \relax (x )}\) | \(18\) |
norman | \(\frac {-{\mathrm e}-\ln \relax (x )}{x^{2} \ln \relax (x )}\) | \(20\) |
default | \(-\frac {1}{x^{2}}-2 \,{\mathrm e} \expIntegralEi \left (1, 2 \ln \relax (x )\right )+{\mathrm e} \left (-\frac {1}{x^{2} \ln \relax (x )}+2 \expIntegralEi \left (1, 2 \ln \relax (x )\right )\right )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.58, size = 25, normalized size = 1.92 \begin {gather*} 2 \, {\rm Ei}\left (-2 \, \log \relax (x)\right ) e - 2 \, e \Gamma \left (-1, 2 \, \log \relax (x)\right ) - \frac {1}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.50, size = 14, normalized size = 1.08 \begin {gather*} -\frac {\mathrm {e}+\ln \relax (x)}{x^2\,\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 1.15 \begin {gather*} - \frac {1}{x^{2}} - \frac {e}{x^{2} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________