Optimal. Leaf size=16 \[ x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 2.17, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{5} e^{\frac {1}{5} \left (e^x \log (4)+(-2+2 x) \log (4)\right )} x^{-1+e^{\frac {1}{5} \left (e^x \log (4)+(-2+2 x) \log (4)\right )}} \left (5+\left (2 x \log (4)+e^x x \log (4)\right ) \log (x)\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int e^{\frac {1}{5} \left (e^x \log (4)+(-2+2 x) \log (4)\right )} x^{-1+e^{\frac {1}{5} \left (e^x \log (4)+(-2+2 x) \log (4)\right )}} \left (5+\left (2 x \log (4)+e^x x \log (4)\right ) \log (x)\right ) \, dx\\ &=\frac {1}{5} \int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} x^{-1+2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \left (5+\left (2+e^x\right ) x \log (4) \log (x)\right ) \, dx\\ &=\frac {1}{5} \int \left (5\ 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} x^{-1+2^{\frac {2}{5} \left (-2+e^x+2 x\right )}}+2^{\frac {2}{5} \left (-2+e^x+2 x\right )} \left (2+e^x\right ) x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \log (4) \log (x)\right ) \, dx\\ &=\frac {1}{5} \log (4) \int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} \left (2+e^x\right ) x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \log (x) \, dx+\int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} x^{-1+2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx\\ &=-\left (\frac {1}{5} \log (4) \int \frac {\int 2^{\frac {1}{5} \left (1+2 e^x+4 x\right )} x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx+\int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} e^x x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx}{x} \, dx\right )+\frac {1}{5} (\log (4) \log (x)) \int 2^{\frac {1}{5} \left (1+2 e^x+4 x\right )} x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx+\frac {1}{5} (\log (4) \log (x)) \int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} e^x x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx+\int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} x^{-1+2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx\\ &=-\left (\frac {1}{5} \log (4) \int \left (\frac {\int 2^{\frac {1}{5} \left (1+2 e^x+4 x\right )} x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx}{x}+\frac {\int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} e^x x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx}{x}\right ) \, dx\right )+\frac {1}{5} (\log (4) \log (x)) \int 2^{\frac {1}{5} \left (1+2 e^x+4 x\right )} x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx+\frac {1}{5} (\log (4) \log (x)) \int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} e^x x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx+\int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} x^{-1+2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx\\ &=-\left (\frac {1}{5} \log (4) \int \frac {\int 2^{\frac {1}{5} \left (1+2 e^x+4 x\right )} x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx}{x} \, dx\right )-\frac {1}{5} \log (4) \int \frac {\int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} e^x x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx}{x} \, dx+\frac {1}{5} (\log (4) \log (x)) \int 2^{\frac {1}{5} \left (1+2 e^x+4 x\right )} x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx+\frac {1}{5} (\log (4) \log (x)) \int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} e^x x^{2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx+\int 2^{\frac {2}{5} \left (-2+e^x+2 x\right )} x^{-1+2^{\frac {2}{5} \left (-2+e^x+2 x\right )}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 2.12, size = 71, normalized size = 4.44 \begin {gather*} \frac {1}{5} \int e^{\frac {1}{5} \left (e^x \log (4)+(-2+2 x) \log (4)\right )} x^{-1+e^{\frac {1}{5} \left (e^x \log (4)+(-2+2 x) \log (4)\right )}} \left (5+\left (2 x \log (4)+e^x x \log (4)\right ) \log (x)\right ) \, dx \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 17, normalized size = 1.06 \begin {gather*} x^{e^{\left (\frac {4}{5} \, {\left (x - 1\right )} \log \relax (2) + \frac {2}{5} \, e^{x} \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 19, normalized size = 1.19 \begin {gather*} x^{e^{\left (\frac {4}{5} \, x \log \relax (2) + \frac {2}{5} \, e^{x} \log \relax (2) - \frac {4}{5} \, \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 14, normalized size = 0.88
method | result | size |
risch | \(x^{2^{\frac {2 \,{\mathrm e}^{x}}{5}+\frac {4 x}{5}-\frac {4}{5}}}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.94, size = 20, normalized size = 1.25 \begin {gather*} x^{\frac {1}{2} \cdot 2^{\frac {1}{5}} e^{\left (\frac {4}{5} \, x \log \relax (2) + \frac {2}{5} \, e^{x} \log \relax (2)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.61, size = 18, normalized size = 1.12 \begin {gather*} x^{\frac {2^{\frac {4\,x}{5}}\,2^{1/5}\,{\left (2^{{\mathrm {e}}^x}\right )}^{2/5}}{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.06, size = 27, normalized size = 1.69 \begin {gather*} e^{e^{\left (\frac {4 x}{5} - \frac {4}{5}\right ) \log {\relax (2 )} + \frac {2 e^{x} \log {\relax (2 )}}{5}} \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________