Optimal. Leaf size=24 \[ 2 e^{2 x+x^2} \left (10+e^{-2 e^x} x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int e^{-2 e^x} \left (e^{2 e^x+2 x+x^2} (40+40 x)+e^{2 x+x^2} \left (4 x+4 x^2-4 e^x x^2+4 x^3\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int e^{-2 e^x+x (2+x)} \left (-4 e^x x^2+40 e^{2 e^x} (1+x)+4 x \left (1+x+x^2\right )\right ) \, dx\\ &=\int \left (-4 e^{-2 e^x+x+x (2+x)} x^2+40 e^{x (2+x)} (1+x)+4 e^{-2 e^x+x (2+x)} x \left (1+x+x^2\right )\right ) \, dx\\ &=-\left (4 \int e^{-2 e^x+x+x (2+x)} x^2 \, dx\right )+4 \int e^{-2 e^x+x (2+x)} x \left (1+x+x^2\right ) \, dx+40 \int e^{x (2+x)} (1+x) \, dx\\ &=-\left (4 \int e^{-2 e^x+x+x (2+x)} x^2 \, dx\right )+4 \int \left (e^{-2 e^x+x (2+x)} x+e^{-2 e^x+x (2+x)} x^2+e^{-2 e^x+x (2+x)} x^3\right ) \, dx+40 \int e^{2 x+x^2} (1+x) \, dx\\ &=20 e^{2 x+x^2}+4 \int e^{-2 e^x+x (2+x)} x \, dx+4 \int e^{-2 e^x+x (2+x)} x^2 \, dx-4 \int e^{-2 e^x+x+x (2+x)} x^2 \, dx+4 \int e^{-2 e^x+x (2+x)} x^3 \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 28, normalized size = 1.17 \begin {gather*} 2 e^{-2 e^x+x (2+x)} \left (10 e^{2 e^x}+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 47, normalized size = 1.96 \begin {gather*} 2 \, {\left (x^{2} e^{\left (2 \, x^{2} + 4 \, x\right )} + 10 \, e^{\left (2 \, x^{2} + 4 \, x + 2 \, e^{x}\right )}\right )} e^{\left (-x^{2} - 2 \, x - 2 \, e^{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 28, normalized size = 1.17 \begin {gather*} 2 \, x^{2} e^{\left (x^{2} + 2 \, x - 2 \, e^{x}\right )} + 20 \, e^{\left (x^{2} + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.12
method | result | size |
risch | \(20 \,{\mathrm e}^{x \left (2+x \right )}+2 x^{2} {\mathrm e}^{x^{2}-2 \,{\mathrm e}^{x}+2 x}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.44, size = 72, normalized size = 3.00 \begin {gather*} 2 \, x^{2} e^{\left (x^{2} + 2 \, x - 2 \, e^{x}\right )} - 20 i \, \sqrt {\pi } \operatorname {erf}\left (i \, x + i\right ) e^{\left (-1\right )} - 20 \, {\left (\frac {\sqrt {\pi } {\left (x + 1\right )} {\left (\operatorname {erf}\left (\sqrt {-{\left (x + 1\right )}^{2}}\right ) - 1\right )}}{\sqrt {-{\left (x + 1\right )}^{2}}} - e^{\left ({\left (x + 1\right )}^{2}\right )}\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.22, size = 21, normalized size = 0.88 \begin {gather*} {\mathrm {e}}^{x^2+2\,x}\,\left (2\,x^2\,{\mathrm {e}}^{-2\,{\mathrm {e}}^x}+20\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 45.09, size = 29, normalized size = 1.21 \begin {gather*} 2 x^{2} e^{x^{2} + 2 x} e^{- 2 e^{x}} + 20 e^{x^{2} + 2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________