Optimal. Leaf size=25 \[ \frac {5}{3} \left (15+\frac {\log ^2(x)}{x^2}-\log \left (\log \left (\frac {x^2}{16}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.17, antiderivative size = 38, normalized size of antiderivative = 1.52, number of steps used = 10, number of rules used = 8, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.186, Rules used = {12, 6688, 14, 2304, 2366, 2303, 2302, 29} \begin {gather*} -\frac {5 (1-\log (x)) \log (x)}{3 x^2}+\frac {5 \log (x)}{3 x^2}-\frac {5}{3} \log \left (\log \left (\frac {x^2}{16}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 29
Rule 2302
Rule 2303
Rule 2304
Rule 2366
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-10 x^2+\left (10 \log (x)-10 \log ^2(x)\right ) \log \left (\frac {x^2}{16}\right )}{x^3 \log \left (\frac {x^2}{16}\right )} \, dx\\ &=\frac {1}{3} \int \frac {10 \left (\log (x)-\log ^2(x)-\frac {x^2}{\log \left (\frac {x^2}{16}\right )}\right )}{x^3} \, dx\\ &=\frac {10}{3} \int \frac {\log (x)-\log ^2(x)-\frac {x^2}{\log \left (\frac {x^2}{16}\right )}}{x^3} \, dx\\ &=\frac {10}{3} \int \left (-\frac {(-1+\log (x)) \log (x)}{x^3}-\frac {1}{x \log \left (\frac {x^2}{16}\right )}\right ) \, dx\\ &=-\left (\frac {10}{3} \int \frac {(-1+\log (x)) \log (x)}{x^3} \, dx\right )-\frac {10}{3} \int \frac {1}{x \log \left (\frac {x^2}{16}\right )} \, dx\\ &=\frac {5 \log (x)}{6 x^2}-\frac {5 (1-\log (x)) \log (x)}{3 x^2}-\frac {5}{3} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (\frac {x^2}{16}\right )\right )+\frac {10}{3} \int \frac {1-2 \log (x)}{4 x^3} \, dx\\ &=\frac {5 \log (x)}{6 x^2}-\frac {5 (1-\log (x)) \log (x)}{3 x^2}-\frac {5}{3} \log \left (\log \left (\frac {x^2}{16}\right )\right )+\frac {5}{6} \int \frac {1-2 \log (x)}{x^3} \, dx\\ &=\frac {5 \log (x)}{3 x^2}-\frac {5 (1-\log (x)) \log (x)}{3 x^2}-\frac {5}{3} \log \left (\log \left (\frac {x^2}{16}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 1.00 \begin {gather*} \frac {5 \log ^2(x)}{3 x^2}-\frac {5}{3} \log \left (\log \left (\frac {x^2}{16}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 26, normalized size = 1.04 \begin {gather*} -\frac {5 \, {\left (x^{2} \log \left (-4 \, \log \relax (2) + 2 \, \log \relax (x)\right ) - \log \relax (x)^{2}\right )}}{3 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 22, normalized size = 0.88 \begin {gather*} \frac {5 \, \log \relax (x)^{2}}{3 \, x^{2}} - \frac {5}{3} \, \log \left (-4 \, \log \relax (2) + 2 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 23, normalized size = 0.92
method | result | size |
default | \(\frac {5 \ln \relax (x )^{2}}{3 x^{2}}-\frac {5 \ln \left (-4 \ln \relax (2)+\ln \left (x^{2}\right )\right )}{3}\) | \(23\) |
risch | \(\frac {5 \ln \relax (x )^{2}}{3 x^{2}}-\frac {5 \ln \left (\ln \relax (x )-\frac {i \left (\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-8 i \ln \relax (2)\right )}{4}\right )}{3}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 39, normalized size = 1.56 \begin {gather*} \frac {5 \, {\left (2 \, \log \relax (x)^{2} + 2 \, \log \relax (x) + 1\right )}}{6 \, x^{2}} - \frac {5 \, \log \relax (x)}{3 \, x^{2}} - \frac {5}{6 \, x^{2}} - \frac {5}{3} \, \log \left (\log \left (\frac {1}{16} \, x^{2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.39, size = 19, normalized size = 0.76 \begin {gather*} \frac {5\,{\ln \relax (x)}^2}{3\,x^2}-\frac {5\,\ln \left (\ln \left (\frac {x^2}{16}\right )\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 24, normalized size = 0.96 \begin {gather*} - \frac {5 \log {\left (\log {\relax (x )} - 2 \log {\relax (2 )} \right )}}{3} + \frac {5 \log {\relax (x )}^{2}}{3 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________