Optimal. Leaf size=27 \[ \left (4 e^{2 e+2 e^5} (6-x)+x\right ) (-x+\log (x)) \]
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 80, normalized size of antiderivative = 2.96, number of steps used = 5, number of rules used = 2, integrand size = 52, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {14, 2295} \begin {gather*} -\left (\left (1-4 e^{2 \left (e+e^5\right )}\right ) x^2\right )-\left (1-4 e^{2 \left (e+e^5\right )}\right ) x+\left (1-28 e^{2 \left (e+e^5\right )}\right ) x+\left (1-4 e^{2 \left (e+e^5\right )}\right ) x \log (x)+24 e^{2 \left (e+e^5\right )} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2295
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {24 e^{2 \left (e+e^5\right )}+\left (1-28 e^{2 \left (e+e^5\right )}\right ) x-2 \left (1-4 e^{2 \left (e+e^5\right )}\right ) x^2}{x}+\left (1-4 e^{2 \left (e+e^5\right )}\right ) \log (x)\right ) \, dx\\ &=\left (1-4 e^{2 \left (e+e^5\right )}\right ) \int \log (x) \, dx+\int \frac {24 e^{2 \left (e+e^5\right )}+\left (1-28 e^{2 \left (e+e^5\right )}\right ) x-2 \left (1-4 e^{2 \left (e+e^5\right )}\right ) x^2}{x} \, dx\\ &=-\left (\left (1-4 e^{2 \left (e+e^5\right )}\right ) x\right )+\left (1-4 e^{2 \left (e+e^5\right )}\right ) x \log (x)+\int \left (1-28 e^{2 \left (e+e^5\right )}+\frac {24 e^{2 e+2 e^5}}{x}-2 \left (1-4 e^{2 \left (e+e^5\right )}\right ) x\right ) \, dx\\ &=\left (1-28 e^{2 \left (e+e^5\right )}\right ) x-\left (1-4 e^{2 \left (e+e^5\right )}\right ) x-\left (1-4 e^{2 \left (e+e^5\right )}\right ) x^2+24 e^{2 \left (e+e^5\right )} \log (x)+\left (1-4 e^{2 \left (e+e^5\right )}\right ) x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 25, normalized size = 0.93 \begin {gather*} \left (4 e^{2 \left (e+e^5\right )} (-6+x)-x\right ) (x-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.77, size = 48, normalized size = 1.78 \begin {gather*} -x^{2} + 4 \, {\left (x^{2} - 6 \, x\right )} e^{\left (2 \, e^{5} + 2 \, e\right )} - {\left (4 \, {\left (x - 6\right )} e^{\left (2 \, e^{5} + 2 \, e\right )} - x\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.18, size = 67, normalized size = 2.48 \begin {gather*} 4 \, x^{2} e^{\left (2 \, e^{5} + 2 \, e\right )} - 4 \, x e^{\left (2 \, e^{5} + 2 \, e\right )} \log \relax (x) - x^{2} - 24 \, x e^{\left (2 \, e^{5} + 2 \, e\right )} + x \log \relax (x) + 24 \, e^{\left (2 \, e^{5} + 2 \, e\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 65, normalized size = 2.41
method | result | size |
norman | \(24 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} {\mathrm e}^{2 \,{\mathrm e}} \ln \relax (x )+\left (4 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} {\mathrm e}^{2 \,{\mathrm e}}-1\right ) x^{2}+\left (-4 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} {\mathrm e}^{2 \,{\mathrm e}}+1\right ) x \ln \relax (x )-24 x \,{\mathrm e}^{2 \,{\mathrm e}^{5}} {\mathrm e}^{2 \,{\mathrm e}}\) | \(65\) |
risch | \(-x \left (4 \,{\mathrm e}^{2 \,{\mathrm e}^{5}+2 \,{\mathrm e}}-1\right ) \ln \relax (x )+4 x^{2} {\mathrm e}^{2 \,{\mathrm e}^{5}+2 \,{\mathrm e}}-24 x \,{\mathrm e}^{2 \,{\mathrm e}^{5}+2 \,{\mathrm e}}-x^{2}+24 \ln \relax (x ) {\mathrm e}^{2 \,{\mathrm e}^{5}+2 \,{\mathrm e}}\) | \(68\) |
default | \(-4 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} {\mathrm e}^{2 \,{\mathrm e}} \left (x \ln \relax (x )-x \right )+4 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} {\mathrm e}^{2 \,{\mathrm e}} x^{2}-28 x \,{\mathrm e}^{2 \,{\mathrm e}^{5}} {\mathrm e}^{2 \,{\mathrm e}}+x \ln \relax (x )+24 \,{\mathrm e}^{2 \,{\mathrm e}^{5}} {\mathrm e}^{2 \,{\mathrm e}} \ln \relax (x )-x^{2}\) | \(73\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.44, size = 72, normalized size = 2.67 \begin {gather*} 4 \, x^{2} e^{\left (2 \, e^{5} + 2 \, e\right )} - x^{2} - 4 \, {\left (x \log \relax (x) - x\right )} e^{\left (2 \, e^{5} + 2 \, e\right )} - 28 \, x e^{\left (2 \, e^{5} + 2 \, e\right )} + x \log \relax (x) + 24 \, e^{\left (2 \, e^{5} + 2 \, e\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.34, size = 35, normalized size = 1.30 \begin {gather*} -\left (x-\ln \relax (x)\right )\,\left (x+24\,{\mathrm {e}}^{2\,\mathrm {e}+2\,{\mathrm {e}}^5}-4\,x\,{\mathrm {e}}^{2\,\mathrm {e}+2\,{\mathrm {e}}^5}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 76, normalized size = 2.81 \begin {gather*} - x^{2} \left (- 4 e^{2 e} e^{2 e^{5}} + 1\right ) - 24 x e^{2 e} e^{2 e^{5}} + \left (- 4 x e^{2 e} e^{2 e^{5}} + x\right ) \log {\relax (x )} + 24 e^{2 e} e^{2 e^{5}} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________