Optimal. Leaf size=25 \[ \frac {1}{5 \left (3+x+\frac {e^x x \log \left (x^2\right )}{x+x^2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 5.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (-2-2 x)-x-2 x^2-x^3-e^x x^2 \log \left (x^2\right )}{45 x+120 x^2+110 x^3+40 x^4+5 x^5+e^x \left (30 x+40 x^2+10 x^3\right ) \log \left (x^2\right )+5 e^{2 x} x \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left ((1+x) \left (2 e^x+x+x^2\right )\right )-e^x x^2 \log \left (x^2\right )}{5 x \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {-\left ((1+x) \left (2 e^x+x+x^2\right )\right )-e^x x^2 \log \left (x^2\right )}{x \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx\\ &=\frac {1}{5} \int \left (-\frac {2+2 x+x^2 \log \left (x^2\right )}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )}+\frac {(1+x) \left (6+8 x+2 x^2-x \log \left (x^2\right )+2 x^2 \log \left (x^2\right )+x^3 \log \left (x^2\right )\right )}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {2+2 x+x^2 \log \left (x^2\right )}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx\right )+\frac {1}{5} \int \frac {(1+x) \left (6+8 x+2 x^2-x \log \left (x^2\right )+2 x^2 \log \left (x^2\right )+x^3 \log \left (x^2\right )\right )}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx\\ &=\frac {1}{5} \int \frac {(1+x) \left (2 \left (3+4 x+x^2\right )+x \left (-1+2 x+x^2\right ) \log \left (x^2\right )\right )}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx-\frac {1}{5} \int \left (\frac {x}{3+4 x+x^2+e^x \log \left (x^2\right )}+\frac {2}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )}+\frac {2}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )}\right ) \, dx\\ &=-\left (\frac {1}{5} \int \frac {x}{3+4 x+x^2+e^x \log \left (x^2\right )} \, dx\right )+\frac {1}{5} \int \left (\frac {6+8 x+2 x^2-x \log \left (x^2\right )+2 x^2 \log \left (x^2\right )+x^3 \log \left (x^2\right )}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {6+8 x+2 x^2-x \log \left (x^2\right )+2 x^2 \log \left (x^2\right )+x^3 \log \left (x^2\right )}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}\right ) \, dx-\frac {2}{5} \int \frac {1}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx-\frac {2}{5} \int \frac {1}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx\\ &=-\left (\frac {1}{5} \int \frac {x}{3+4 x+x^2+e^x \log \left (x^2\right )} \, dx\right )+\frac {1}{5} \int \frac {6+8 x+2 x^2-x \log \left (x^2\right )+2 x^2 \log \left (x^2\right )+x^3 \log \left (x^2\right )}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {1}{5} \int \frac {6+8 x+2 x^2-x \log \left (x^2\right )+2 x^2 \log \left (x^2\right )+x^3 \log \left (x^2\right )}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx-\frac {2}{5} \int \frac {1}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx-\frac {2}{5} \int \frac {1}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx\\ &=-\left (\frac {1}{5} \int \frac {x}{3+4 x+x^2+e^x \log \left (x^2\right )} \, dx\right )+\frac {1}{5} \int \frac {2 \left (3+4 x+x^2\right )+x \left (-1+2 x+x^2\right ) \log \left (x^2\right )}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {1}{5} \int \frac {2 \left (3+4 x+x^2\right )+x \left (-1+2 x+x^2\right ) \log \left (x^2\right )}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx-\frac {2}{5} \int \frac {1}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx-\frac {2}{5} \int \frac {1}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx\\ &=-\left (\frac {1}{5} \int \frac {x}{3+4 x+x^2+e^x \log \left (x^2\right )} \, dx\right )+\frac {1}{5} \int \left (-\frac {1}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {2 x}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {x^2}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {8}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {6}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {2 x}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}\right ) \, dx+\frac {1}{5} \int \left (-\frac {x}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {2 x^2}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {x^3}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {6}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {8 x}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}+\frac {2 x^2}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2}\right ) \, dx-\frac {2}{5} \int \frac {1}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx-\frac {2}{5} \int \frac {1}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx\\ &=-\left (\frac {1}{5} \int \frac {1}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx\right )-\frac {1}{5} \int \frac {x}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {1}{5} \int \frac {x^2}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {1}{5} \int \frac {x^3}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx-\frac {1}{5} \int \frac {x}{3+4 x+x^2+e^x \log \left (x^2\right )} \, dx+\frac {2}{5} \int \frac {x}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {2}{5} \int \frac {x^2}{\left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {2}{5} \int \frac {x}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {2}{5} \int \frac {x^2}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx-\frac {2}{5} \int \frac {1}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx-\frac {2}{5} \int \frac {1}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \, dx+\frac {6}{5} \int \frac {1}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {6}{5} \int \frac {1}{x \log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {8}{5} \int \frac {1}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx+\frac {8}{5} \int \frac {x}{\log \left (x^2\right ) \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.66, size = 27, normalized size = 1.08 \begin {gather*} -\frac {-1-x}{5 \left (3+4 x+x^2+e^x \log \left (x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 22, normalized size = 0.88 \begin {gather*} \frac {x + 1}{5 \, {\left (x^{2} + e^{x} \log \left (x^{2}\right ) + 4 \, x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 22, normalized size = 0.88 \begin {gather*} \frac {x + 1}{5 \, {\left (x^{2} + e^{x} \log \left (x^{2}\right ) + 4 \, x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.15, size = 79, normalized size = 3.16
method | result | size |
risch | \(\frac {\frac {2 x}{5}+\frac {2}{5}}{-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right ) {\mathrm e}^{x}+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2} {\mathrm e}^{x}-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3} {\mathrm e}^{x}+2 x^{2}+4 \,{\mathrm e}^{x} \ln \relax (x )+8 x +6}\) | \(79\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 21, normalized size = 0.84 \begin {gather*} \frac {x + 1}{5 \, {\left (x^{2} + 2 \, e^{x} \log \relax (x) + 4 \, x + 3\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.58, size = 90, normalized size = 3.60 \begin {gather*} \frac {\frac {2\,x\,{\mathrm {e}}^{2\,x}}{5}+\frac {2\,x^2\,{\mathrm {e}}^{2\,x}}{5}-{\mathrm {e}}^x\,\left (\frac {x^5}{5}+\frac {3\,x^4}{5}+\frac {x^3}{5}-\frac {x^2}{5}\right )}{\left (4\,x+\ln \left (x^2\right )\,{\mathrm {e}}^x+x^2+3\right )\,\left (2\,x\,{\mathrm {e}}^{2\,x}+x^2\,{\mathrm {e}}^x-2\,x^3\,{\mathrm {e}}^x-x^4\,{\mathrm {e}}^x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 22, normalized size = 0.88 \begin {gather*} \frac {x + 1}{5 x^{2} + 20 x + 5 e^{x} \log {\left (x^{2} \right )} + 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________