Optimal. Leaf size=33 \[ \frac {e^{2 x}}{x \left (-e^4+e^{\frac {2 (1-x)}{3}}+\frac {7 x}{4}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} \left (e^4 (48-96 x)-168 x+168 x^2+e^{\frac {1}{3} (2-2 x)} (-48+128 x)\right )}{48 e^8 x^2+48 e^{\frac {2}{3} (2-2 x)} x^2-168 e^4 x^3+147 x^4+e^{\frac {1}{3} (2-2 x)} \left (-96 e^4 x^2+168 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{10 x/3} \left (e^4 (48-96 x)-168 x+168 x^2+e^{\frac {1}{3} (2-2 x)} (-48+128 x)\right )}{3 x^2 \left (4 e^{2/3}-4 e^{4+\frac {2 x}{3}}+7 e^{2 x/3} x\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {e^{10 x/3} \left (e^4 (48-96 x)-168 x+168 x^2+e^{\frac {1}{3} (2-2 x)} (-48+128 x)\right )}{x^2 \left (4 e^{2/3}-4 e^{4+\frac {2 x}{3}}+7 e^{2 x/3} x\right )^2} \, dx\\ &=\frac {1}{3} \int \left (\frac {e^{-\frac {2}{3}+\frac {8 x}{3}} (-3+8 x)}{x^2}+\frac {4 e^{10 x/3} \left (-21+8 e^4-14 x\right )}{x \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )^2}-\frac {e^{-\frac {2}{3}+\frac {10 x}{3}} \left (4 e^4-7 x\right ) (-3+8 x)}{x^2 \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )}\right ) \, dx\\ &=\frac {1}{3} \int \frac {e^{-\frac {2}{3}+\frac {8 x}{3}} (-3+8 x)}{x^2} \, dx-\frac {1}{3} \int \frac {e^{-\frac {2}{3}+\frac {10 x}{3}} \left (4 e^4-7 x\right ) (-3+8 x)}{x^2 \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )} \, dx+\frac {4}{3} \int \frac {e^{10 x/3} \left (-21+8 e^4-14 x\right )}{x \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )^2} \, dx\\ &=\frac {e^{-\frac {2}{3}+\frac {8 x}{3}}}{x}-\frac {1}{3} \int \left (-\frac {56 e^{-\frac {2}{3}+\frac {10 x}{3}}}{-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x}-\frac {12 e^{\frac {10}{3}+\frac {10 x}{3}}}{x^2 \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )}+\frac {e^{-\frac {2}{3}+\frac {10 x}{3}} \left (21+32 e^4\right )}{x \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )}\right ) \, dx+\frac {4}{3} \int \left (-\frac {14 e^{10 x/3}}{\left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )^2}+\frac {e^{10 x/3} \left (-21+8 e^4\right )}{x \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )^2}\right ) \, dx\\ &=\frac {e^{-\frac {2}{3}+\frac {8 x}{3}}}{x}+4 \int \frac {e^{\frac {10}{3}+\frac {10 x}{3}}}{x^2 \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )} \, dx-\frac {56}{3} \int \frac {e^{10 x/3}}{\left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )^2} \, dx+\frac {56}{3} \int \frac {e^{-\frac {2}{3}+\frac {10 x}{3}}}{-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x} \, dx-\frac {1}{3} \left (4 \left (21-8 e^4\right )\right ) \int \frac {e^{10 x/3}}{x \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )^2} \, dx-\frac {1}{3} \left (21+32 e^4\right ) \int \frac {e^{-\frac {2}{3}+\frac {10 x}{3}}}{x \left (-4 e^{2/3}+4 e^{4+\frac {2 x}{3}}-7 e^{2 x/3} x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 44, normalized size = 1.33 \begin {gather*} \frac {8 e^{8 x/3}}{8 e^{2/3} x-8 e^{4+\frac {2 x}{3}} x+14 e^{2 x/3} x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 34, normalized size = 1.03 \begin {gather*} \frac {4 \, e^{2}}{{\left (7 \, x^{2} - 4 \, x e^{4}\right )} e^{\left (-2 \, x + 2\right )} + 4 \, x e^{\left (-\frac {8}{3} \, x + \frac {8}{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.36, size = 529, normalized size = 16.03 \begin {gather*} \frac {4 \, {\left (33614 \, x^{6} e^{\left (\frac {8}{3} \, x\right )} + 50421 \, x^{5} e^{\left (\frac {8}{3} \, x\right )} - 96040 \, x^{5} e^{\left (\frac {8}{3} \, x + 4\right )} + 19208 \, x^{5} e^{\left (2 \, x + \frac {2}{3}\right )} + 109760 \, x^{4} e^{\left (\frac {8}{3} \, x + 8\right )} - 115248 \, x^{4} e^{\left (\frac {8}{3} \, x + 4\right )} - 43904 \, x^{4} e^{\left (2 \, x + \frac {14}{3}\right )} + 28812 \, x^{4} e^{\left (2 \, x + \frac {2}{3}\right )} - 62720 \, x^{3} e^{\left (\frac {8}{3} \, x + 12\right )} + 98784 \, x^{3} e^{\left (\frac {8}{3} \, x + 8\right )} + 37632 \, x^{3} e^{\left (2 \, x + \frac {26}{3}\right )} - 49392 \, x^{3} e^{\left (2 \, x + \frac {14}{3}\right )} + 17920 \, x^{2} e^{\left (\frac {8}{3} \, x + 16\right )} - 37632 \, x^{2} e^{\left (\frac {8}{3} \, x + 12\right )} - 14336 \, x^{2} e^{\left (2 \, x + \frac {38}{3}\right )} + 28224 \, x^{2} e^{\left (2 \, x + \frac {26}{3}\right )} - 2048 \, x e^{\left (\frac {8}{3} \, x + 20\right )} + 5376 \, x e^{\left (\frac {8}{3} \, x + 16\right )} + 2048 \, x e^{\left (2 \, x + \frac {50}{3}\right )} - 5376 \, x e^{\left (2 \, x + \frac {38}{3}\right )}\right )}}{235298 \, x^{8} e^{\left (\frac {2}{3} \, x\right )} + 268912 \, x^{7} e^{\frac {2}{3}} + 352947 \, x^{7} e^{\left (\frac {2}{3} \, x\right )} - 806736 \, x^{7} e^{\left (\frac {2}{3} \, x + 4\right )} - 768320 \, x^{6} e^{\frac {14}{3}} + 403368 \, x^{6} e^{\frac {2}{3}} + 1152480 \, x^{6} e^{\left (\frac {2}{3} \, x + 8\right )} - 1008420 \, x^{6} e^{\left (\frac {2}{3} \, x + 4\right )} + 76832 \, x^{6} e^{\left (-\frac {2}{3} \, x + \frac {4}{3}\right )} + 878080 \, x^{5} e^{\frac {26}{3}} - 921984 \, x^{5} e^{\frac {14}{3}} - 878080 \, x^{5} e^{\left (\frac {2}{3} \, x + 12\right )} + 1152480 \, x^{5} e^{\left (\frac {2}{3} \, x + 8\right )} - 175616 \, x^{5} e^{\left (-\frac {2}{3} \, x + \frac {16}{3}\right )} + 115248 \, x^{5} e^{\left (-\frac {2}{3} \, x + \frac {4}{3}\right )} - 501760 \, x^{4} e^{\frac {38}{3}} + 790272 \, x^{4} e^{\frac {26}{3}} + 376320 \, x^{4} e^{\left (\frac {2}{3} \, x + 16\right )} - 658560 \, x^{4} e^{\left (\frac {2}{3} \, x + 12\right )} + 150528 \, x^{4} e^{\left (-\frac {2}{3} \, x + \frac {28}{3}\right )} - 197568 \, x^{4} e^{\left (-\frac {2}{3} \, x + \frac {16}{3}\right )} + 143360 \, x^{3} e^{\frac {50}{3}} - 301056 \, x^{3} e^{\frac {38}{3}} - 86016 \, x^{3} e^{\left (\frac {2}{3} \, x + 20\right )} + 188160 \, x^{3} e^{\left (\frac {2}{3} \, x + 16\right )} - 57344 \, x^{3} e^{\left (-\frac {2}{3} \, x + \frac {40}{3}\right )} + 112896 \, x^{3} e^{\left (-\frac {2}{3} \, x + \frac {28}{3}\right )} - 16384 \, x^{2} e^{\frac {62}{3}} + 43008 \, x^{2} e^{\frac {50}{3}} + 8192 \, x^{2} e^{\left (\frac {2}{3} \, x + 24\right )} - 21504 \, x^{2} e^{\left (\frac {2}{3} \, x + 20\right )} + 8192 \, x^{2} e^{\left (-\frac {2}{3} \, x + \frac {52}{3}\right )} - 21504 \, x^{2} e^{\left (-\frac {2}{3} \, x + \frac {40}{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.21, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (128 x -48\right ) {\mathrm e}^{-\frac {2 x}{3}+\frac {2}{3}}+\left (-96 x +48\right ) {\mathrm e}^{4}+168 x^{2}-168 x \right ) {\mathrm e}^{2 x}}{48 x^{2} {\mathrm e}^{-\frac {4 x}{3}+\frac {4}{3}}+\left (-96 x^{2} {\mathrm e}^{4}+168 x^{3}\right ) {\mathrm e}^{-\frac {2 x}{3}+\frac {2}{3}}+48 x^{2} {\mathrm e}^{8}-168 x^{3} {\mathrm e}^{4}+147 x^{4}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 34, normalized size = 1.03 \begin {gather*} \frac {4 \, e^{\left (\frac {8}{3} \, x + \frac {1}{3}\right )}}{4 \, x e + {\left (7 \, x^{2} e^{\frac {1}{3}} - 4 \, x e^{\frac {13}{3}}\right )} e^{\left (\frac {2}{3} \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {{\mathrm {e}}^{2\,x}\,\left (168\,x-{\mathrm {e}}^{\frac {2}{3}-\frac {2\,x}{3}}\,\left (128\,x-48\right )-168\,x^2+{\mathrm {e}}^4\,\left (96\,x-48\right )\right )}{48\,x^2\,{\mathrm {e}}^8-168\,x^3\,{\mathrm {e}}^4-{\mathrm {e}}^{\frac {2}{3}-\frac {2\,x}{3}}\,\left (96\,x^2\,{\mathrm {e}}^4-168\,x^3\right )+48\,x^2\,{\mathrm {e}}^{\frac {4}{3}-\frac {4\,x}{3}}+147\,x^4} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________