Optimal. Leaf size=19 \[ -3+\log ^2\left (\frac {36}{25} e^{2 x} (4+x)^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {(20+4 x) \log \left (\frac {1}{25} e^{2 x} \left (576+288 x+36 x^2\right )\right )}{4+x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (4 \log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )+\frac {4 \log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )}{4+x}\right ) \, dx\\ &=4 \int \log \left (\frac {36}{25} e^{2 x} (4+x)^2\right ) \, dx+4 \int \frac {\log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )}{4+x} \, dx\\ &=4 x \log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )-4 \int \frac {2 x (5+x)}{4+x} \, dx+4 \int \frac {\log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )}{4+x} \, dx\\ &=4 x \log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )+4 \int \frac {\log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )}{4+x} \, dx-8 \int \frac {x (5+x)}{4+x} \, dx\\ &=4 x \log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )+4 \int \frac {\log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )}{4+x} \, dx-8 \int \left (1+x-\frac {4}{4+x}\right ) \, dx\\ &=-8 x-4 x^2+32 \log (4+x)+4 x \log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )+4 \int \frac {\log \left (\frac {36}{25} e^{2 x} (4+x)^2\right )}{4+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 17, normalized size = 0.89 \begin {gather*} \log ^2\left (\frac {36}{25} e^{2 x} (4+x)^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 17, normalized size = 0.89 \begin {gather*} \log \left (\frac {36}{25} \, {\left (x^{2} + 8 \, x + 16\right )} e^{\left (2 \, x\right )}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.15, size = 33, normalized size = 1.74 \begin {gather*} 4 \, x^{2} + 4 \, x \log \left (\frac {36}{25} \, x^{2} + \frac {288}{25} \, x + \frac {576}{25}\right ) + \log \left (\frac {36}{25} \, x^{2} + \frac {288}{25} \, x + \frac {576}{25}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.70, size = 20, normalized size = 1.05
method | result | size |
norman | \(\ln \left (\frac {\left (36 x^{2}+288 x +576\right ) {\mathrm e}^{2 x}}{25}\right )^{2}\) | \(20\) |
default | \(4 \ln \left (\frac {\left (36 x^{2}+288 x +576\right ) {\mathrm e}^{2 x}}{25}\right ) \ln \left (4+x \right )+4 \ln \left (\frac {\left (36 x^{2}+288 x +576\right ) {\mathrm e}^{2 x}}{25}\right ) x -4 x^{2}+32 \ln \left (4+x \right )-8 \left (4+x \right ) \ln \left (4+x \right )+32-4 \ln \left (4+x \right )^{2}\) | \(74\) |
risch | \(-4 x^{2}-2 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i \left (4+x \right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x} \left (4+x \right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-2 i \pi x \,\mathrm {csgn}\left (i \left (4+x \right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x} \left (4+x \right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-8 x \ln \relax (5)+8 x \ln \relax (3)+8 x \ln \relax (2)-2 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}-2 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{2 x} \left (4+x \right )^{2}\right )^{3}-2 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{3}-2 i \pi x \mathrm {csgn}\left (i \left (4+x \right )^{2}\right )^{3}-2 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i \left (4+x \right )^{2}\right )^{3}-2 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x} \left (4+x \right )^{2}\right )^{3}-8 \ln \relax (5) \ln \left (4+x \right )+8 \ln \relax (2) \ln \left (4+x \right )+8 \ln \relax (3) \ln \left (4+x \right )+\left (8 x +8 \ln \left (4+x \right )\right ) \ln \left ({\mathrm e}^{x}\right )+4 \ln \left (4+x \right )^{2}-2 i \pi x \mathrm {csgn}\left (i \left (4+x \right )\right )^{2} \mathrm {csgn}\left (i \left (4+x \right )^{2}\right )+4 i \pi x \,\mathrm {csgn}\left (i \left (4+x \right )\right ) \mathrm {csgn}\left (i \left (4+x \right )^{2}\right )^{2}+2 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i \left (4+x \right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x} \left (4+x \right )^{2}\right )^{2}+2 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x} \left (4+x \right )^{2}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-2 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+4 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}+2 i \pi x \,\mathrm {csgn}\left (i \left (4+x \right )^{2}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x} \left (4+x \right )^{2}\right )^{2}-2 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i \left (4+x \right )\right )^{2} \mathrm {csgn}\left (i \left (4+x \right )^{2}\right )+4 i \pi \ln \left (4+x \right ) \mathrm {csgn}\left (i \left (4+x \right )\right ) \mathrm {csgn}\left (i \left (4+x \right )^{2}\right )^{2}+2 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{2 x} \left (4+x \right )^{2}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )-2 i \pi x \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )+4 i \pi x \,\mathrm {csgn}\left (i {\mathrm e}^{x}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 x}\right )^{2}\) | \(560\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 184, normalized size = 9.68 \begin {gather*} 4 \, {\left (x + \log \left (x + 4\right )\right )} \log \left (\frac {36}{25} \, {\left (x^{2} + 8 \, x + 16\right )} e^{\left (2 \, x\right )}\right ) - 8 \, {\left (\frac {x^{2} + 4 \, x - 16}{x + 4} - 8 \, \log \left (x + 4\right )\right )} \log \left (x + 4\right ) - 72 \, {\left (\frac {4}{x + 4} + \log \left (x + 4\right )\right )} \log \left (x + 4\right ) - \frac {4 \, {\left (x^{3} - 12 \, x^{2} - 64 \, x + 128\right )}}{x + 4} - \frac {8 \, {\left (4 \, {\left (x + 4\right )} \log \left (x + 4\right )^{2} - x^{2} + 4 \, {\left (x + 4\right )} \log \left (x + 4\right ) - 4 \, x - 16\right )}}{x + 4} + \frac {36 \, {\left ({\left (x + 4\right )} \log \left (x + 4\right )^{2} - 8\right )}}{x + 4} - \frac {72 \, {\left (x^{2} + 4 \, x - 16\right )}}{x + 4} + \frac {160 \, \log \left (x + 4\right )}{x + 4} - \frac {480}{x + 4} + 32 \, \log \left (x + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.65, size = 17, normalized size = 0.89 \begin {gather*} {\left (2\,x+\ln \left (\frac {36\,x^2}{25}+\frac {288\,x}{25}+\frac {576}{25}\right )\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 22, normalized size = 1.16 \begin {gather*} \log {\left (\left (\frac {36 x^{2}}{25} + \frac {288 x}{25} + \frac {576}{25}\right ) e^{2 x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________