Optimal. Leaf size=23 \[ \left (x-e^{-5+\frac {e^x}{4}-\frac {15}{x^4}} x\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 4.37, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {60+20 x^4-e^x x^4}{2 x^4}} \left (240+4 x^4+4 e^{\frac {60+20 x^4-e^x x^4}{2 x^4}} x^4+e^x x^5+e^{\frac {60+20 x^4-e^x x^4}{4 x^4}} \left (-240-8 x^4-e^x x^5\right )\right )}{2 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{-\frac {60+20 x^4-e^x x^4}{2 x^4}} \left (240+4 x^4+4 e^{\frac {60+20 x^4-e^x x^4}{2 x^4}} x^4+e^x x^5+e^{\frac {60+20 x^4-e^x x^4}{4 x^4}} \left (-240-8 x^4-e^x x^5\right )\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \frac {e^{-10-\frac {30}{x^4}} \left (e^{\frac {e^x}{4}}-e^{5+\frac {15}{x^4}}\right ) \left (-4 e^{5+\frac {15}{x^4}} x^4+e^{\frac {e^x}{4}+x} x^5+4 e^{\frac {e^x}{4}} \left (60+x^4\right )\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \left (e^{-10-\frac {30}{x^4}+\frac {1}{4} \left (e^x+4 x\right )} \left (e^{\frac {e^x}{4}}-e^{5+\frac {15}{x^4}}\right ) x^2+\frac {4 e^{-10-\frac {30}{x^4}} \left (60 e^{\frac {e^x}{2}}-60 e^{5+\frac {e^x}{4}+\frac {15}{x^4}}+e^{\frac {e^x}{2}} x^4-2 e^{5+\frac {e^x}{4}+\frac {15}{x^4}} x^4+e^{10+\frac {30}{x^4}} x^4\right )}{x^3}\right ) \, dx\\ &=\frac {1}{2} \int e^{-10-\frac {30}{x^4}+\frac {1}{4} \left (e^x+4 x\right )} \left (e^{\frac {e^x}{4}}-e^{5+\frac {15}{x^4}}\right ) x^2 \, dx+2 \int \frac {e^{-10-\frac {30}{x^4}} \left (60 e^{\frac {e^x}{2}}-60 e^{5+\frac {e^x}{4}+\frac {15}{x^4}}+e^{\frac {e^x}{2}} x^4-2 e^{5+\frac {e^x}{4}+\frac {15}{x^4}} x^4+e^{10+\frac {30}{x^4}} x^4\right )}{x^3} \, dx\\ &=\frac {1}{2} \int \left (e^{-10+\frac {e^x}{4}-\frac {30}{x^4}+\frac {1}{4} \left (e^x+4 x\right )} x^2-e^{-5-\frac {15}{x^4}+\frac {1}{4} \left (e^x+4 x\right )} x^2\right ) \, dx+2 \int \frac {x^4-2 e^{-5+\frac {e^x}{4}-\frac {15}{x^4}} \left (30+x^4\right )+e^{-10+\frac {e^x}{2}-\frac {30}{x^4}} \left (60+x^4\right )}{x^3} \, dx\\ &=\frac {1}{2} \int e^{-10+\frac {e^x}{4}-\frac {30}{x^4}+\frac {1}{4} \left (e^x+4 x\right )} x^2 \, dx-\frac {1}{2} \int e^{-5-\frac {15}{x^4}+\frac {1}{4} \left (e^x+4 x\right )} x^2 \, dx+2 \int \left (x-\frac {2 e^{-5+\frac {e^x}{4}-\frac {15}{x^4}} \left (30+x^4\right )}{x^3}+\frac {e^{-10+\frac {e^x}{2}-\frac {30}{x^4}} \left (60+x^4\right )}{x^3}\right ) \, dx\\ &=x^2+\frac {1}{2} \int e^{-10+\frac {e^x}{2}-\frac {30}{x^4}+x} x^2 \, dx-\frac {1}{2} \int e^{-5-\frac {15}{x^4}+\frac {1}{4} \left (e^x+4 x\right )} x^2 \, dx+2 \int \frac {e^{-10+\frac {e^x}{2}-\frac {30}{x^4}} \left (60+x^4\right )}{x^3} \, dx-4 \int \frac {e^{-5+\frac {e^x}{4}-\frac {15}{x^4}} \left (30+x^4\right )}{x^3} \, dx\\ &=x^2+\frac {1}{2} \int e^{-10+\frac {e^x}{2}-\frac {30}{x^4}+x} x^2 \, dx-\frac {1}{2} \int e^{-5-\frac {15}{x^4}+\frac {1}{4} \left (e^x+4 x\right )} x^2 \, dx+2 \int \left (\frac {60 e^{-10+\frac {e^x}{2}-\frac {30}{x^4}}}{x^3}+e^{-10+\frac {e^x}{2}-\frac {30}{x^4}} x\right ) \, dx-4 \int \left (\frac {30 e^{-5+\frac {e^x}{4}-\frac {15}{x^4}}}{x^3}+e^{-5+\frac {e^x}{4}-\frac {15}{x^4}} x\right ) \, dx\\ &=x^2+\frac {1}{2} \int e^{-10+\frac {e^x}{2}-\frac {30}{x^4}+x} x^2 \, dx-\frac {1}{2} \int e^{-5-\frac {15}{x^4}+\frac {1}{4} \left (e^x+4 x\right )} x^2 \, dx+2 \int e^{-10+\frac {e^x}{2}-\frac {30}{x^4}} x \, dx-4 \int e^{-5+\frac {e^x}{4}-\frac {15}{x^4}} x \, dx+120 \int \frac {e^{-10+\frac {e^x}{2}-\frac {30}{x^4}}}{x^3} \, dx-120 \int \frac {e^{-5+\frac {e^x}{4}-\frac {15}{x^4}}}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 36, normalized size = 1.57 \begin {gather*} e^{-10-\frac {30}{x^4}} \left (e^{\frac {e^x}{4}}-e^{5+\frac {15}{x^4}}\right )^2 x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.68, size = 75, normalized size = 3.26 \begin {gather*} -{\left (2 \, x^{2} e^{\left (-\frac {x^{4} e^{x} - 20 \, x^{4} - 60}{4 \, x^{4}}\right )} - x^{2} e^{\left (-\frac {x^{4} e^{x} - 20 \, x^{4} - 60}{2 \, x^{4}}\right )} - x^{2}\right )} e^{\left (\frac {x^{4} e^{x} - 20 \, x^{4} - 60}{2 \, x^{4}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{5} e^{x} + 4 \, x^{4} e^{\left (-\frac {x^{4} e^{x} - 20 \, x^{4} - 60}{2 \, x^{4}}\right )} + 4 \, x^{4} - {\left (x^{5} e^{x} + 8 \, x^{4} + 240\right )} e^{\left (-\frac {x^{4} e^{x} - 20 \, x^{4} - 60}{4 \, x^{4}}\right )} + 240\right )} e^{\left (\frac {x^{4} e^{x} - 20 \, x^{4} - 60}{2 \, x^{4}}\right )}}{2 \, x^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.07, size = 52, normalized size = 2.26
method | result | size |
risch | \(x^{2}-2 x^{2} {\mathrm e}^{\frac {{\mathrm e}^{x} x^{4}-20 x^{4}-60}{4 x^{4}}}+x^{2} {\mathrm e}^{\frac {{\mathrm e}^{x} x^{4}-20 x^{4}-60}{2 x^{4}}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 40, normalized size = 1.74 \begin {gather*} x^{2} + {\left (x^{2} e^{\left (\frac {1}{2} \, e^{x}\right )} - 2 \, x^{2} e^{\left (\frac {15}{x^{4}} + \frac {1}{4} \, e^{x} + 5\right )}\right )} e^{\left (-\frac {30}{x^{4}} - 10\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.24, size = 32, normalized size = 1.39 \begin {gather*} x^2\,{\mathrm {e}}^{\frac {{\mathrm {e}}^x}{2}-\frac {30}{x^4}-10}\,{\left ({\mathrm {e}}^{\frac {15}{x^4}-\frac {{\mathrm {e}}^x}{4}+5}-1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.26, size = 51, normalized size = 2.22 \begin {gather*} x^{2} - 2 x^{2} e^{- \frac {- \frac {x^{4} e^{x}}{4} + 5 x^{4} + 15}{x^{4}}} + x^{2} e^{- \frac {2 \left (- \frac {x^{4} e^{x}}{4} + 5 x^{4} + 15\right )}{x^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________