Optimal. Leaf size=26 \[ x^2 \log ^2\left (\frac {4-x+\frac {1}{e^5+x+x^2}}{x}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2 x \left (-e^5 \left (1+4 e^5\right )-2 \left (1+4 e^5\right ) x-\left (7+8 e^5\right ) x^2-8 x^3-4 x^4\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{\left (e^5+x+x^2\right ) \left (1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3\right )}+2 x \log ^2\left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )\right ) \, dx\\ &=2 \int \frac {x \left (-e^5 \left (1+4 e^5\right )-2 \left (1+4 e^5\right ) x-\left (7+8 e^5\right ) x^2-8 x^3-4 x^4\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{\left (e^5+x+x^2\right ) \left (1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3\right )} \, dx+2 \int x \log ^2\left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right ) \, dx\\ &=x^2 \log ^2\left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )-2 \int \frac {x \left (-e^5 \left (1+4 e^5\right )-2 \left (1+4 e^5\right ) x-\left (7+8 e^5\right ) x^2-8 x^3-4 x^4\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{\left (e^5+x+x^2\right ) \left (1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3\right )} \, dx+2 \int \left (4 \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )+\frac {\left (-e^5-\left (1-2 e^5\right ) x\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{e^5+x+x^2}+\frac {\left (-3 \left (1+4 e^5\right )-3 \left (5+3 e^5\right ) x-\left (17-2 e^5\right ) x^2\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}\right ) \, dx\\ &=x^2 \log ^2\left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )+2 \int \frac {\left (-e^5-\left (1-2 e^5\right ) x\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{e^5+x+x^2} \, dx+2 \int \frac {\left (-3 \left (1+4 e^5\right )-3 \left (5+3 e^5\right ) x-\left (17-2 e^5\right ) x^2\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3} \, dx-2 \int \left (4 \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )+\frac {\left (-e^5-\left (1-2 e^5\right ) x\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{e^5+x+x^2}+\frac {\left (-3 \left (1+4 e^5\right )-3 \left (5+3 e^5\right ) x-\left (17-2 e^5\right ) x^2\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}\right ) \, dx+8 \int \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right ) \, dx\\ &=8 x \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )+x^2 \log ^2\left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )-2 \int \frac {\left (-e^5-\left (1-2 e^5\right ) x\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{e^5+x+x^2} \, dx-2 \int \frac {\left (-3 \left (1+4 e^5\right )-3 \left (5+3 e^5\right ) x-\left (17-2 e^5\right ) x^2\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3} \, dx+2 \int \left (\frac {\left (-1+2 e^5+i \sqrt {-1+4 e^5}\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{1-i \sqrt {-1+4 e^5}+2 x}+\frac {\left (-1+2 e^5-i \sqrt {-1+4 e^5}\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{1+i \sqrt {-1+4 e^5}+2 x}\right ) \, dx+2 \int \left (\frac {3 \left (-1-4 e^5\right ) \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}+\frac {3 \left (-5-3 e^5\right ) x \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}+\frac {\left (-17+2 e^5\right ) x^2 \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right )}{1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}\right ) \, dx-8 \int \frac {-e^5 \left (1+4 e^5\right )-2 \left (1+4 e^5\right ) x-\left (7+8 e^5\right ) x^2-8 x^3-4 x^4}{\left (e^5+x+x^2\right ) \left (1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3\right )} \, dx-8 \int \log \left (\frac {1+4 e^5+\left (4-e^5\right ) x+3 x^2-x^3}{x \left (e^5+x+x^2\right )}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 180.17, size = 0, normalized size = 0.00 \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 41, normalized size = 1.58 \begin {gather*} x^{2} \log \left (-\frac {x^{3} - 3 \, x^{2} + {\left (x - 4\right )} e^{5} - 4 \, x - 1}{x^{3} + x^{2} + x e^{5}}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.48, size = 43, normalized size = 1.65 \begin {gather*} x^{2} \log \left (-\frac {x^{3} - 3 \, x^{2} + x e^{5} - 4 \, x - 4 \, e^{5} - 1}{x^{3} + x^{2} + x e^{5}}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.47, size = 45, normalized size = 1.73
method | result | size |
norman | \(x^{2} \ln \left (\frac {\left (-x +4\right ) {\mathrm e}^{5}-x^{3}+3 x^{2}+4 x +1}{x \,{\mathrm e}^{5}+x^{3}+x^{2}}\right )^{2}\) | \(45\) |
risch | \(x^{2} \ln \left (\frac {\left (-x +4\right ) {\mathrm e}^{5}-x^{3}+3 x^{2}+4 x +1}{x \,{\mathrm e}^{5}+x^{3}+x^{2}}\right )^{2}\) | \(45\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 113, normalized size = 4.35 \begin {gather*} x^{2} \log \left (-x^{3} + 3 \, x^{2} - x {\left (e^{5} - 4\right )} + 4 \, e^{5} + 1\right )^{2} + x^{2} \log \left (x^{2} + x + e^{5}\right )^{2} + 2 \, x^{2} \log \left (x^{2} + x + e^{5}\right ) \log \relax (x) + x^{2} \log \relax (x)^{2} - 2 \, {\left (x^{2} \log \left (x^{2} + x + e^{5}\right ) + x^{2} \log \relax (x)\right )} \log \left (-x^{3} + 3 \, x^{2} - x {\left (e^{5} - 4\right )} + 4 \, e^{5} + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.12, size = 43, normalized size = 1.65 \begin {gather*} x^2\,{\ln \left (\frac {4\,x-{\mathrm {e}}^5\,\left (x-4\right )+3\,x^2-x^3+1}{x^3+x^2+{\mathrm {e}}^5\,x}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.50, size = 37, normalized size = 1.42 \begin {gather*} x^{2} \log {\left (\frac {- x^{3} + 3 x^{2} + 4 x + \left (4 - x\right ) e^{5} + 1}{x^{3} + x^{2} + x e^{5}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________