Optimal. Leaf size=25 \[ e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}} \]
________________________________________________________________________________________
Rubi [F] time = 4.34, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}} \left (8+4 x-2 x^2+\left (-4 x+x^2\right ) \log \left (\frac {(-4+x) \log (4)}{16 x}\right )\right )}{-16 x+20 x^2-8 x^3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}} \left (-8-4 x+2 x^2-\left (-4 x+x^2\right ) \log \left (\frac {(-4+x) \log (4)}{16 x}\right )\right )}{x \left (16-20 x+8 x^2-x^3\right )} \, dx\\ &=\int \left (\frac {4 e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{(-4+x) (-2+x)^2}+\frac {8 e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{(-4+x) (-2+x)^2 x}-\frac {2 e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}} x}{(-4+x) (-2+x)^2}+\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}} \log \left (\frac {\log (4)}{16}-\frac {\log (4)}{4 x}\right )}{(2-x)^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}} x}{(-4+x) (-2+x)^2} \, dx\right )+4 \int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{(-4+x) (-2+x)^2} \, dx+8 \int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{(-4+x) (-2+x)^2 x} \, dx+\int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}} \log \left (\frac {\log (4)}{16}-\frac {\log (4)}{4 x}\right )}{(2-x)^2} \, dx\\ &=-\left (2 \int \left (\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{2-x}+\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{-4+x}-\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{(-2+x)^2}\right ) \, dx\right )+4 \int \left (\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{4 (-4+x)}-\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{2 (-2+x)^2}-\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{4 (-2+x)}\right ) \, dx+8 \int \left (\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{16 (-4+x)}-\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{4 (-2+x)^2}-\frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{16 x}\right ) \, dx+\int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}} \log \left (\frac {\log (4)}{16}-\frac {\log (4)}{4 x}\right )}{(2-x)^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{-4+x} \, dx-\frac {1}{2} \int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{x} \, dx-2 \int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{2-x} \, dx-2 \int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{-4+x} \, dx-2 \int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{(-2+x)^2} \, dx+\int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{-4+x} \, dx-\int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}}}{-2+x} \, dx+\int \frac {e^{\frac {2-\log \left (\frac {(-4+x) \log (4)}{16 x}\right )}{-2+x}} \log \left (\frac {\log (4)}{16}-\frac {\log (4)}{4 x}\right )}{(2-x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.08, size = 37, normalized size = 1.48 \begin {gather*} e^{\frac {2}{-2+x}} \left (\frac {-4+x}{x}\right )^{-\frac {1}{-2+x}} \left (\frac {16}{\log (4)}\right )^{\frac {1}{-2+x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 21, normalized size = 0.84 \begin {gather*} e^{\left (-\frac {\log \left (\frac {{\left (x - 4\right )} \log \relax (2)}{8 \, x}\right ) - 2}{x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 29, normalized size = 1.16 \begin {gather*} e^{\left (-\frac {\log \left (-\frac {\log \relax (2)}{2 \, x} + \frac {1}{8} \, \log \relax (2)\right )}{x - 2} + \frac {2}{x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.23, size = 22, normalized size = 0.88
method | result | size |
risch | \({\mathrm e}^{-\frac {\ln \left (\frac {\left (x -4\right ) \ln \relax (2)}{8 x}\right )-2}{x -2}}\) | \(22\) |
norman | \(\frac {x \,{\mathrm e}^{\frac {-\ln \left (\frac {\left (x -4\right ) \ln \relax (2)}{8 x}\right )+2}{x -2}}-2 \,{\mathrm e}^{\frac {-\ln \left (\frac {\left (x -4\right ) \ln \relax (2)}{8 x}\right )+2}{x -2}}}{x -2}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 47, normalized size = 1.88 \begin {gather*} e^{\left (\frac {3 \, \log \relax (2)}{x - 2} - \frac {\log \left (x - 4\right )}{x - 2} + \frac {\log \relax (x)}{x - 2} - \frac {\log \left (\log \relax (2)\right )}{x - 2} + \frac {2}{x - 2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.61, size = 29, normalized size = 1.16 \begin {gather*} \frac {{\mathrm {e}}^{\frac {2}{x-2}}}{{\left (\frac {\ln \relax (2)}{8}-\frac {\ln \relax (2)}{2\,x}\right )}^{\frac {1}{x-2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 19, normalized size = 0.76 \begin {gather*} e^{\frac {2 - \log {\left (\frac {\left (\frac {x}{8} - \frac {1}{2}\right ) \log {\relax (2 )}}{x} \right )}}{x - 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________