Optimal. Leaf size=20 \[ 5+\left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 0.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}} \left (-2 x^2-e \log \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )\right )}{e x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {\left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}} \left (-2 x^2-e \log \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )\right )}{x^2} \, dx}{e}\\ &=\frac {\int \left (-2 \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}}-\frac {e \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}} \log \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )}{x^2}\right ) \, dx}{e}\\ &=-\frac {2 \int \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}} \, dx}{e}-\int \frac {\left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}} \log \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )}{x^2} \, dx\\ &=-\frac {2 \int \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}} \, dx}{e}-\log \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right ) \int \frac {\left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}}}{x^2} \, dx+\int -\frac {2 x \int \frac {\left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}}}{x^2} \, dx}{e} \, dx\\ &=-\frac {2 \int \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}} \, dx}{e}-\frac {2 \int x \int \frac {\left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}}}{x^2} \, dx \, dx}{e}-\log \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right ) \int \frac {\left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}}}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 18, normalized size = 0.90 \begin {gather*} \left (e^{\frac {3}{4}-\frac {x^2}{e}}\right )^{\frac {1}{x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 18, normalized size = 0.90 \begin {gather*} e^{\left (-\frac {{\left (4 \, x^{2} - 3 \, e\right )} e^{\left (-1\right )}}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 12, normalized size = 0.60 \begin {gather*} e^{\left (-x e^{\left (-1\right )} + \frac {3}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 19, normalized size = 0.95
method | result | size |
risch | \({\mathrm e}^{-\frac {-3+4 \ln \left ({\mathrm e}^{x^{2} {\mathrm e}^{-1}}\right )}{4 x}}\) | \(19\) |
default | \({\mathrm e}^{\frac {\ln \left ({\mathrm e}^{\frac {3}{4}} {\mathrm e}^{-x^{2} {\mathrm e}^{-1}}\right )}{x}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 12, normalized size = 0.60 \begin {gather*} e^{\left (-x e^{\left (-1\right )} + \frac {3}{4 \, x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.36, size = 12, normalized size = 0.60 \begin {gather*} {\mathrm {e}}^{\frac {3}{4\,x}-x\,{\mathrm {e}}^{-1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________