Optimal. Leaf size=15 \[ e^{e^{\frac {x}{-4-x}} x} \]
________________________________________________________________________________________
Rubi [F] time = 1.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (e^{\frac {-x+(4+x) \log (x)}{4+x}}+\frac {-x+(4+x) \log (x)}{4+x}\right ) \left (16+4 x+x^2\right )}{16 x+8 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (e^{\frac {-x+(4+x) \log (x)}{4+x}}+\frac {-x+(4+x) \log (x)}{4+x}\right ) \left (16+4 x+x^2\right )}{x \left (16+8 x+x^2\right )} \, dx\\ &=\int \frac {\exp \left (e^{\frac {-x+(4+x) \log (x)}{4+x}}+\frac {-x+(4+x) \log (x)}{4+x}\right ) \left (16+4 x+x^2\right )}{x (4+x)^2} \, dx\\ &=\int \frac {e^{e^{-\frac {x}{4+x}} x-\frac {x}{4+x}} \left (16+4 x+x^2\right )}{(4+x)^2} \, dx\\ &=\int \left (e^{e^{-\frac {x}{4+x}} x-\frac {x}{4+x}}+\frac {16 e^{e^{-\frac {x}{4+x}} x-\frac {x}{4+x}}}{(4+x)^2}-\frac {4 e^{e^{-\frac {x}{4+x}} x-\frac {x}{4+x}}}{4+x}\right ) \, dx\\ &=-\left (4 \int \frac {e^{e^{-\frac {x}{4+x}} x-\frac {x}{4+x}}}{4+x} \, dx\right )+16 \int \frac {e^{e^{-\frac {x}{4+x}} x-\frac {x}{4+x}}}{(4+x)^2} \, dx+\int e^{e^{-\frac {x}{4+x}} x-\frac {x}{4+x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 15, normalized size = 1.00 \begin {gather*} e^{e^{-1+\frac {4}{4+x}} x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.82, size = 56, normalized size = 3.73 \begin {gather*} e^{\left (\frac {{\left (x + 4\right )} e^{\left (\frac {{\left (x + 4\right )} \log \relax (x) - x}{x + 4}\right )} + {\left (x + 4\right )} \log \relax (x) - x}{x + 4} - \frac {{\left (x + 4\right )} \log \relax (x) - x}{x + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x^{2} + 4 \, x + 16\right )} e^{\left (\frac {{\left (x + 4\right )} \log \relax (x) - x}{x + 4} + e^{\left (\frac {{\left (x + 4\right )} \log \relax (x) - x}{x + 4}\right )}\right )}}{x^{3} + 8 \, x^{2} + 16 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 21, normalized size = 1.40
method | result | size |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {x \ln \relax (x )+4 \ln \relax (x )-x}{4+x}}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.59, size = 13, normalized size = 0.87 \begin {gather*} e^{\left (x e^{\left (\frac {4}{x + 4} - 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.63, size = 12, normalized size = 0.80 \begin {gather*} {\mathrm {e}}^{x\,{\mathrm {e}}^{-\frac {x}{x+4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________