Optimal. Leaf size=25 \[ 12 e^{4/x} (7-x) x \log \left (1+\frac {5}{x}\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 16.85, antiderivative size = 43, normalized size of antiderivative = 1.72, number of steps used = 175, number of rules used = 16, integrand size = 93, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.172, Rules used = {1593, 6742, 6688, 2226, 2206, 2210, 2214, 2554, 6483, 6475, 12, 14, 2222, 2228, 2178, 2557} \begin {gather*} 84 e^{4/x} x \log \left (\frac {5}{x}+1\right ) \log (x)-12 e^{4/x} x^2 \log \left (\frac {5}{x}+1\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 1593
Rule 2178
Rule 2206
Rule 2210
Rule 2214
Rule 2222
Rule 2226
Rule 2228
Rule 2554
Rule 2557
Rule 6475
Rule 6483
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{4/x} \left (420 x+24 x^2-12 x^3\right ) \log \left (\frac {5+x}{x}\right )+\log (x) \left (e^{4/x} \left (-420 x+60 x^2\right )+e^{4/x} \left (-1680+324 x+12 x^2-24 x^3\right ) \log \left (\frac {5+x}{x}\right )\right )}{x (5+x)} \, dx\\ &=\int \left (-\frac {12 e^{4/x} \left (35 x \log (x)-5 x^2 \log (x)-35 x \log \left (\frac {5+x}{x}\right )-2 x^2 \log \left (\frac {5+x}{x}\right )+x^3 \log \left (\frac {5+x}{x}\right )+140 \log (x) \log \left (\frac {5+x}{x}\right )-27 x \log (x) \log \left (\frac {5+x}{x}\right )-x^2 \log (x) \log \left (\frac {5+x}{x}\right )+2 x^3 \log (x) \log \left (\frac {5+x}{x}\right )\right )}{5 x}+\frac {12 e^{4/x} \left (35 x \log (x)-5 x^2 \log (x)-35 x \log \left (\frac {5+x}{x}\right )-2 x^2 \log \left (\frac {5+x}{x}\right )+x^3 \log \left (\frac {5+x}{x}\right )+140 \log (x) \log \left (\frac {5+x}{x}\right )-27 x \log (x) \log \left (\frac {5+x}{x}\right )-x^2 \log (x) \log \left (\frac {5+x}{x}\right )+2 x^3 \log (x) \log \left (\frac {5+x}{x}\right )\right )}{5 (5+x)}\right ) \, dx\\ &=-\left (\frac {12}{5} \int \frac {e^{4/x} \left (35 x \log (x)-5 x^2 \log (x)-35 x \log \left (\frac {5+x}{x}\right )-2 x^2 \log \left (\frac {5+x}{x}\right )+x^3 \log \left (\frac {5+x}{x}\right )+140 \log (x) \log \left (\frac {5+x}{x}\right )-27 x \log (x) \log \left (\frac {5+x}{x}\right )-x^2 \log (x) \log \left (\frac {5+x}{x}\right )+2 x^3 \log (x) \log \left (\frac {5+x}{x}\right )\right )}{x} \, dx\right )+\frac {12}{5} \int \frac {e^{4/x} \left (35 x \log (x)-5 x^2 \log (x)-35 x \log \left (\frac {5+x}{x}\right )-2 x^2 \log \left (\frac {5+x}{x}\right )+x^3 \log \left (\frac {5+x}{x}\right )+140 \log (x) \log \left (\frac {5+x}{x}\right )-27 x \log (x) \log \left (\frac {5+x}{x}\right )-x^2 \log (x) \log \left (\frac {5+x}{x}\right )+2 x^3 \log (x) \log \left (\frac {5+x}{x}\right )\right )}{5+x} \, dx\\ &=-\left (\frac {12}{5} \int \frac {e^{4/x} \left (x \left (-35-2 x+x^2\right ) \log \left (\frac {5+x}{x}\right )+\log (x) \left (-5 (-7+x) x+\left (140-27 x-x^2+2 x^3\right ) \log \left (\frac {5+x}{x}\right )\right )\right )}{x} \, dx\right )+\frac {12}{5} \int \frac {e^{4/x} \left (x \left (-35-2 x+x^2\right ) \log \left (\frac {5+x}{x}\right )+\log (x) \left (-5 (-7+x) x+\left (140-27 x-x^2+2 x^3\right ) \log \left (\frac {5+x}{x}\right )\right )\right )}{5+x} \, dx\\ &=\frac {12}{5} \int \left (-\frac {5 e^{4/x} (-7+x) x \log (x)}{5+x}+e^{4/x} \log \left (1+\frac {5}{x}\right ) \left (-7 x+x^2+28 \log (x)-11 x \log (x)+2 x^2 \log (x)\right )\right ) \, dx-\frac {12}{5} \int \left (-5 e^{4/x} (-7+x) \log (x)+\frac {e^{4/x} (5+x) \log \left (1+\frac {5}{x}\right ) \left (-7 x+x^2+28 \log (x)-11 x \log (x)+2 x^2 \log (x)\right )}{x}\right ) \, dx\\ &=\frac {12}{5} \int e^{4/x} \log \left (1+\frac {5}{x}\right ) \left (-7 x+x^2+28 \log (x)-11 x \log (x)+2 x^2 \log (x)\right ) \, dx-\frac {12}{5} \int \frac {e^{4/x} (5+x) \log \left (1+\frac {5}{x}\right ) \left (-7 x+x^2+28 \log (x)-11 x \log (x)+2 x^2 \log (x)\right )}{x} \, dx+12 \int e^{4/x} (-7+x) \log (x) \, dx-12 \int \frac {e^{4/x} (-7+x) x \log (x)}{5+x} \, dx\\ &=60 e^{4/x} x \log (x)-\frac {720 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right ) \log (x)}{e^{4/5}}+480 \text {Ei}\left (\frac {4}{x}\right ) \log (x)+\frac {12}{5} \int \left (e^{4/x} (-7+x) x \log \left (1+\frac {5}{x}\right )+e^{4/x} \left (28-11 x+2 x^2\right ) \log \left (1+\frac {5}{x}\right ) \log (x)\right ) \, dx-\frac {12}{5} \int \left (e^{4/x} \left (-35-2 x+x^2\right ) \log \left (1+\frac {5}{x}\right )+\frac {e^{4/x} \left (140-27 x-x^2+2 x^3\right ) \log \left (1+\frac {5}{x}\right ) \log (x)}{x}\right ) \, dx+12 \int \frac {\frac {1}{2} e^{4/x} (-20+x) x+\frac {60 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{e^{4/5}}-20 \text {Ei}\left (\frac {4}{x}\right )}{x} \, dx-12 \int \left (\frac {1}{2} e^{4/x} (-10+x)+\frac {20 \text {Ei}\left (\frac {4}{x}\right )}{x}\right ) \, dx\\ &=60 e^{4/x} x \log (x)-\frac {720 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right ) \log (x)}{e^{4/5}}+480 \text {Ei}\left (\frac {4}{x}\right ) \log (x)+\frac {12}{5} \int e^{4/x} (-7+x) x \log \left (1+\frac {5}{x}\right ) \, dx-\frac {12}{5} \int e^{4/x} \left (-35-2 x+x^2\right ) \log \left (1+\frac {5}{x}\right ) \, dx+\frac {12}{5} \int e^{4/x} \left (28-11 x+2 x^2\right ) \log \left (1+\frac {5}{x}\right ) \log (x) \, dx-\frac {12}{5} \int \frac {e^{4/x} \left (140-27 x-x^2+2 x^3\right ) \log \left (1+\frac {5}{x}\right ) \log (x)}{x} \, dx-6 \int e^{4/x} (-10+x) \, dx+12 \int \left (\frac {1}{2} e^{4/x} (-20+x)-\frac {20 \left (-3 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )+e^{4/5} \text {Ei}\left (\frac {4}{x}\right )\right )}{e^{4/5} x}\right ) \, dx-240 \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx\\ &=60 e^{4/x} x \log \left (1+\frac {5}{x}\right )-6 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right )-240 \text {Ei}\left (\frac {4}{x}\right ) \log \left (1+\frac {5}{x}\right )+60 e^{4/x} x \log (x)-\frac {720 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right ) \log (x)}{e^{4/5}}+480 \text {Ei}\left (\frac {4}{x}\right ) \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)+\frac {12}{5} \int \frac {-5 e^{4/x} x \left (-109-x+x^2\right )-2180 \text {Ei}\left (\frac {4}{x}\right )}{3 x (5+x)} \, dx-\frac {12}{5} \int \frac {5 \left (-e^{4/x} x \left (-68-17 x+2 x^2\right )-272 \text {Ei}\left (\frac {4}{x}\right )\right )}{6 x (5+x)} \, dx-\frac {12}{5} \int \frac {\left (e^{4/x} x \left (68-25 x+4 x^2\right )-272 \text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (1+\frac {5}{x}\right )}{6 x} \, dx+\frac {12}{5} \int \frac {\left (e^{4/x} x \left (-142+5 x+4 x^2\right )-272 \text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (1+\frac {5}{x}\right )}{6 x} \, dx-\frac {12}{5} \int \frac {5 \left (-e^{4/x} x \left (68-25 x+4 x^2\right )+272 \text {Ei}\left (\frac {4}{x}\right )\right ) \log (x)}{6 x (5+x)} \, dx+\frac {12}{5} \int \frac {5 \left (-e^{4/x} x \left (-142+5 x+4 x^2\right )+272 \text {Ei}\left (\frac {4}{x}\right )\right ) \log (x)}{6 x (5+x)} \, dx+6 \int e^{4/x} (-20+x) \, dx-6 \int \left (-10 e^{4/x}+e^{4/x} x\right ) \, dx+240 \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )-\frac {240 \int \frac {-3 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )+e^{4/5} \text {Ei}\left (\frac {4}{x}\right )}{x} \, dx}{e^{4/5}}\\ &=60 e^{4/x} x \log \left (1+\frac {5}{x}\right )-6 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right )-240 \text {Ei}\left (\frac {4}{x}\right ) \log \left (1+\frac {5}{x}\right )+240 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )+60 e^{4/x} x \log (x)-\frac {720 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right ) \log (x)}{e^{4/5}}+480 \text {Ei}\left (\frac {4}{x}\right ) \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)-\frac {2}{5} \int \frac {\left (e^{4/x} x \left (68-25 x+4 x^2\right )-272 \text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (1+\frac {5}{x}\right )}{x} \, dx+\frac {2}{5} \int \frac {\left (e^{4/x} x \left (-142+5 x+4 x^2\right )-272 \text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (1+\frac {5}{x}\right )}{x} \, dx+\frac {4}{5} \int \frac {-5 e^{4/x} x \left (-109-x+x^2\right )-2180 \text {Ei}\left (\frac {4}{x}\right )}{x (5+x)} \, dx-2 \int \frac {-e^{4/x} x \left (-68-17 x+2 x^2\right )-272 \text {Ei}\left (\frac {4}{x}\right )}{x (5+x)} \, dx-2 \int \frac {\left (-e^{4/x} x \left (68-25 x+4 x^2\right )+272 \text {Ei}\left (\frac {4}{x}\right )\right ) \log (x)}{x (5+x)} \, dx+2 \int \frac {\left (-e^{4/x} x \left (-142+5 x+4 x^2\right )+272 \text {Ei}\left (\frac {4}{x}\right )\right ) \log (x)}{x (5+x)} \, dx-6 \int e^{4/x} x \, dx+6 \int \left (-20 e^{4/x}+e^{4/x} x\right ) \, dx+60 \int e^{4/x} \, dx-240 \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )-\frac {240 \int \left (-\frac {3 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{x}+\frac {e^{4/5} \text {Ei}\left (\frac {4}{x}\right )}{x}\right ) \, dx}{e^{4/5}}\\ &=60 e^{4/x} x-3 e^{4/x} x^2+\frac {960 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+60 e^{4/x} x \log \left (1+\frac {5}{x}\right )-6 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right )-240 \text {Ei}\left (\frac {4}{x}\right ) \log \left (1+\frac {5}{x}\right )+120 \log ^2\left (-\frac {4}{x}\right )+240 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-240 \gamma \log (x)+60 e^{4/x} x \log (x)-\frac {720 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right ) \log (x)}{e^{4/5}}+480 \text {Ei}\left (\frac {4}{x}\right ) \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)-\frac {2}{5} \int \left (e^{4/x} \left (68-25 x+4 x^2\right ) \log \left (1+\frac {5}{x}\right )-\frac {272 \text {Ei}\left (\frac {4}{x}\right ) \log \left (1+\frac {5}{x}\right )}{x}\right ) \, dx+\frac {2}{5} \int \left (e^{4/x} \left (-142+5 x+4 x^2\right ) \log \left (1+\frac {5}{x}\right )-\frac {272 \text {Ei}\left (\frac {4}{x}\right ) \log \left (1+\frac {5}{x}\right )}{x}\right ) \, dx+\frac {4}{5} \int \left (-\frac {5 e^{4/x} \left (-109-x+x^2\right )}{5+x}-\frac {2180 \text {Ei}\left (\frac {4}{x}\right )}{x (5+x)}\right ) \, dx-2 \int \left (-\frac {e^{4/x} \left (-68-17 x+2 x^2\right )}{5+x}-\frac {272 \text {Ei}\left (\frac {4}{x}\right )}{x (5+x)}\right ) \, dx-2 \int \left (-\frac {e^{4/x} \left (68-25 x+4 x^2\right ) \log (x)}{5+x}+\frac {272 \text {Ei}\left (\frac {4}{x}\right ) \log (x)}{x (5+x)}\right ) \, dx+2 \int \left (-\frac {e^{4/x} \left (-142+5 x+4 x^2\right ) \log (x)}{5+x}+\frac {272 \text {Ei}\left (\frac {4}{x}\right ) \log (x)}{x (5+x)}\right ) \, dx+6 \int e^{4/x} x \, dx-12 \int e^{4/x} \, dx-120 \int e^{4/x} \, dx+240 \int \frac {e^{4/x}}{x} \, dx-240 \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx+\frac {720 \int \frac {\text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{x} \, dx}{e^{4/5}}\\ &=-72 e^{4/x} x-240 \text {Ei}\left (\frac {4}{x}\right )+\frac {960 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+60 e^{4/x} x \log \left (1+\frac {5}{x}\right )-6 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right )-240 \text {Ei}\left (\frac {4}{x}\right ) \log \left (1+\frac {5}{x}\right )+120 \log ^2\left (-\frac {4}{x}\right )+240 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-240 \gamma \log (x)+60 e^{4/x} x \log (x)-\frac {720 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right ) \log (x)}{e^{4/5}}+480 \text {Ei}\left (\frac {4}{x}\right ) \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)-\frac {2}{5} \int e^{4/x} \left (68-25 x+4 x^2\right ) \log \left (1+\frac {5}{x}\right ) \, dx+\frac {2}{5} \int e^{4/x} \left (-142+5 x+4 x^2\right ) \log \left (1+\frac {5}{x}\right ) \, dx+2 \int \frac {e^{4/x} \left (-68-17 x+2 x^2\right )}{5+x} \, dx+2 \int \frac {e^{4/x} \left (68-25 x+4 x^2\right ) \log (x)}{5+x} \, dx-2 \int \frac {e^{4/x} \left (-142+5 x+4 x^2\right ) \log (x)}{5+x} \, dx-4 \int \frac {e^{4/x} \left (-109-x+x^2\right )}{5+x} \, dx+12 \int e^{4/x} \, dx-48 \int \frac {e^{4/x}}{x} \, dx+240 \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )-480 \int \frac {e^{4/x}}{x} \, dx+544 \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x (5+x)} \, dx-1744 \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x (5+x)} \, dx-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ &=-60 e^{4/x} x+288 \text {Ei}\left (\frac {4}{x}\right )+\frac {960 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+120 \log ^2\left (-\frac {4}{x}\right )+480 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-240 \gamma \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)-\frac {2}{5} \int \frac {5 \left (-e^{4/x} x \left (-728+31 x+8 x^2\right )-2912 \text {Ei}\left (\frac {4}{x}\right )\right )}{6 x (5+x)} \, dx+\frac {2}{5} \int \frac {-5 e^{4/x} x \left (172-59 x+8 x^2\right )+3440 \text {Ei}\left (\frac {4}{x}\right )}{6 x (5+x)} \, dx+2 \int \left (-27 e^{4/x}+2 e^{4/x} x+\frac {67 e^{4/x}}{5+x}\right ) \, dx-2 \int \frac {e^{4/x} x (-37+2 x)+\frac {293 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{e^{4/5}}-145 \text {Ei}\left (\frac {4}{x}\right )}{x} \, dx+2 \int \frac {e^{4/x} x (-7+2 x)-\frac {67 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{e^{4/5}}+95 \text {Ei}\left (\frac {4}{x}\right )}{x} \, dx-4 \int \left (-6 e^{4/x}+e^{4/x} x-\frac {79 e^{4/x}}{5+x}\right ) \, dx+48 \int \frac {e^{4/x}}{x} \, dx-240 \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )+544 \int \left (\frac {\text {Ei}\left (\frac {4}{x}\right )}{5 x}-\frac {\text {Ei}\left (\frac {4}{x}\right )}{5 (5+x)}\right ) \, dx-1744 \int \left (\frac {\text {Ei}\left (\frac {4}{x}\right )}{5 x}-\frac {\text {Ei}\left (\frac {4}{x}\right )}{5 (5+x)}\right ) \, dx-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ &=-60 e^{4/x} x+240 \text {Ei}\left (\frac {4}{x}\right )+\frac {1920 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+240 \log ^2\left (-\frac {4}{x}\right )+480 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-480 \gamma \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)+\frac {1}{15} \int \frac {-5 e^{4/x} x \left (172-59 x+8 x^2\right )+3440 \text {Ei}\left (\frac {4}{x}\right )}{x (5+x)} \, dx-\frac {1}{3} \int \frac {-e^{4/x} x \left (-728+31 x+8 x^2\right )-2912 \text {Ei}\left (\frac {4}{x}\right )}{x (5+x)} \, dx-2 \int \left (e^{4/x} (-37+2 x)+\frac {293 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )-145 e^{4/5} \text {Ei}\left (\frac {4}{x}\right )}{e^{4/5} x}\right ) \, dx+2 \int \left (e^{4/x} (-7+2 x)+\frac {-67 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )+95 e^{4/5} \text {Ei}\left (\frac {4}{x}\right )}{e^{4/5} x}\right ) \, dx+24 \int e^{4/x} \, dx-54 \int e^{4/x} \, dx+\frac {544}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx-\frac {544}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+134 \int \frac {e^{4/x}}{5+x} \, dx+316 \int \frac {e^{4/x}}{5+x} \, dx-\frac {1744}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx+\frac {1744}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ &=-90 e^{4/x} x+240 \text {Ei}\left (\frac {4}{x}\right )+\frac {1920 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+240 \log ^2\left (-\frac {4}{x}\right )+480 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-480 \gamma \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)+\frac {1}{15} \int \left (-\frac {5 e^{4/x} \left (172-59 x+8 x^2\right )}{5+x}+\frac {3440 \text {Ei}\left (\frac {4}{x}\right )}{x (5+x)}\right ) \, dx-\frac {1}{3} \int \left (-\frac {e^{4/x} \left (-728+31 x+8 x^2\right )}{5+x}-\frac {2912 \text {Ei}\left (\frac {4}{x}\right )}{x (5+x)}\right ) \, dx-2 \int e^{4/x} (-37+2 x) \, dx+2 \int e^{4/x} (-7+2 x) \, dx+96 \int \frac {e^{4/x}}{x} \, dx-\frac {544}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-\frac {544}{5} \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )+134 \int \frac {e^{4/x}}{x} \, dx-216 \int \frac {e^{4/x}}{x} \, dx+316 \int \frac {e^{4/x}}{x} \, dx+\frac {1744}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {1744}{5} \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )-670 \int \frac {e^{4/x}}{x (5+x)} \, dx-1580 \int \frac {e^{4/x}}{x (5+x)} \, dx-\frac {2 \int \frac {293 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )-145 e^{4/5} \text {Ei}\left (\frac {4}{x}\right )}{x} \, dx}{e^{4/5}}+\frac {2 \int \frac {-67 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )+95 e^{4/5} \text {Ei}\left (\frac {4}{x}\right )}{x} \, dx}{e^{4/5}}-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ &=-90 e^{4/x} x-90 \text {Ei}\left (\frac {4}{x}\right )+\frac {1920 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+240 \log ^2\left (-\frac {4}{x}\right )+720 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-480 \gamma \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)-\frac {1}{3} \int \frac {e^{4/x} \left (172-59 x+8 x^2\right )}{5+x} \, dx+\frac {1}{3} \int \frac {e^{4/x} \left (-728+31 x+8 x^2\right )}{5+x} \, dx-2 \int \left (-37 e^{4/x}+2 e^{4/x} x\right ) \, dx+2 \int \left (-7 e^{4/x}+2 e^{4/x} x\right ) \, dx-\frac {544}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {544}{5} \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )+134 \operatorname {Subst}\left (\int \frac {e^{-\frac {4}{5}+\frac {4 x}{5}}}{x} \, dx,x,\frac {5+x}{x}\right )+\frac {688}{3} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x (5+x)} \, dx+316 \operatorname {Subst}\left (\int \frac {e^{-\frac {4}{5}+\frac {4 x}{5}}}{x} \, dx,x,\frac {5+x}{x}\right )+\frac {1744}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-\frac {1744}{5} \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )+\frac {2912}{3} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x (5+x)} \, dx-\frac {2 \int \left (\frac {293 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{x}-\frac {145 e^{4/5} \text {Ei}\left (\frac {4}{x}\right )}{x}\right ) \, dx}{e^{4/5}}+\frac {2 \int \left (-\frac {67 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{x}+\frac {95 e^{4/5} \text {Ei}\left (\frac {4}{x}\right )}{x}\right ) \, dx}{e^{4/5}}-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ &=-90 e^{4/x} x+\frac {450 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{e^{4/5}}-90 \text {Ei}\left (\frac {4}{x}\right )+\frac {2880 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+360 \log ^2\left (-\frac {4}{x}\right )+720 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-720 \gamma \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)+\frac {1}{3} \int \left (-9 e^{4/x}+8 e^{4/x} x-\frac {683 e^{4/x}}{5+x}\right ) \, dx-\frac {1}{3} \int \left (-99 e^{4/x}+8 e^{4/x} x+\frac {667 e^{4/x}}{5+x}\right ) \, dx-14 \int e^{4/x} \, dx+74 \int e^{4/x} \, dx-\frac {544}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+190 \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx+\frac {688}{3} \int \left (\frac {\text {Ei}\left (\frac {4}{x}\right )}{5 x}-\frac {\text {Ei}\left (\frac {4}{x}\right )}{5 (5+x)}\right ) \, dx+290 \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx+\frac {1744}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {2912}{3} \int \left (\frac {\text {Ei}\left (\frac {4}{x}\right )}{5 x}-\frac {\text {Ei}\left (\frac {4}{x}\right )}{5 (5+x)}\right ) \, dx-\frac {134 \int \frac {\text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{x} \, dx}{e^{4/5}}-\frac {586 \int \frac {\text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{x} \, dx}{e^{4/5}}-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ &=-30 e^{4/x} x+\frac {450 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{e^{4/5}}-90 \text {Ei}\left (\frac {4}{x}\right )+\frac {2880 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+360 \log ^2\left (-\frac {4}{x}\right )+720 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-720 \gamma \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)-3 \int e^{4/x} \, dx+33 \int e^{4/x} \, dx+\frac {688}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx-\frac {688}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-56 \int \frac {e^{4/x}}{x} \, dx-\frac {544}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-190 \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )+\frac {2912}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{x} \, dx-\frac {2912}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-\frac {667}{3} \int \frac {e^{4/x}}{5+x} \, dx-\frac {683}{3} \int \frac {e^{4/x}}{5+x} \, dx-290 \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )+296 \int \frac {e^{4/x}}{x} \, dx+\frac {1744}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {134 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}+\frac {586 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ &=\frac {450 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{e^{4/5}}-330 \text {Ei}\left (\frac {4}{x}\right )+\frac {2880 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+360 \log ^2\left (-\frac {4}{x}\right )+240 \left (E_1\left (-\frac {4}{x}\right )+\text {Ei}\left (\frac {4}{x}\right )\right ) \log \left (\frac {1}{x}\right )-720 \gamma \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)-12 \int \frac {e^{4/x}}{x} \, dx-\frac {688}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-\frac {688}{15} \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )-\frac {544}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+132 \int \frac {e^{4/x}}{x} \, dx+190 \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )-\frac {2912}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-\frac {2912}{15} \operatorname {Subst}\left (\int \frac {\text {Ei}(4 x)}{x} \, dx,x,\frac {1}{x}\right )-\frac {667}{3} \int \frac {e^{4/x}}{x} \, dx-\frac {683}{3} \int \frac {e^{4/x}}{x} \, dx+290 \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )+\frac {1744}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {3335}{3} \int \frac {e^{4/x}}{x (5+x)} \, dx+\frac {3415}{3} \int \frac {e^{4/x}}{x (5+x)} \, dx+\frac {134 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}+\frac {586 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ &=\frac {450 \text {Ei}\left (\frac {4}{5}+\frac {4}{x}\right )}{e^{4/5}}+\frac {960 \, _3F_3\left (1,1,1;2,2,2;\frac {4}{x}\right )}{x}+120 \log ^2\left (-\frac {4}{x}\right )-240 \gamma \log (x)+84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)-\frac {688}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {688}{15} \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )-\frac {544}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-\frac {2912}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {2912}{15} \operatorname {Subst}\left (\int \frac {E_1(-4 x)}{x} \, dx,x,\frac {1}{x}\right )-\frac {667}{3} \operatorname {Subst}\left (\int \frac {e^{-\frac {4}{5}+\frac {4 x}{5}}}{x} \, dx,x,\frac {5+x}{x}\right )-\frac {683}{3} \operatorname {Subst}\left (\int \frac {e^{-\frac {4}{5}+\frac {4 x}{5}}}{x} \, dx,x,\frac {5+x}{x}\right )+\frac {1744}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {134 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}+\frac {586 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ &=84 e^{4/x} x \log \left (1+\frac {5}{x}\right ) \log (x)-12 e^{4/x} x^2 \log \left (1+\frac {5}{x}\right ) \log (x)-\frac {688}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-\frac {544}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx-\frac {2912}{15} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {1744}{5} \int \frac {\text {Ei}\left (\frac {4}{x}\right )}{5+x} \, dx+\frac {134 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}+\frac {586 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}-\frac {720 \operatorname {Subst}\left (\int \frac {\text {Ei}\left (\frac {4}{5}+4 x\right )}{x} \, dx,x,\frac {1}{x}\right )}{e^{4/5}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.06, size = 23, normalized size = 0.92 \begin {gather*} -12 e^{4/x} (-7+x) x \log (x) \log \left (\frac {5+x}{x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 25, normalized size = 1.00 \begin {gather*} -12 \, {\left (x^{2} - 7 \, x\right )} e^{\frac {4}{x}} \log \relax (x) \log \left (\frac {x + 5}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.34, size = 308, normalized size = 12.32
method | result | size |
risch | \(-12 x \left (x -7\right ) {\mathrm e}^{\frac {4}{x}} \ln \relax (x ) \ln \left (5+x \right )-6 i \pi \,x^{2} \mathrm {csgn}\left (i \left (5+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (5+x \right )}{x}\right )^{2} {\mathrm e}^{\frac {4}{x}} \ln \relax (x )+6 i \pi \,x^{2} \mathrm {csgn}\left (i \left (5+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (5+x \right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) {\mathrm e}^{\frac {4}{x}} \ln \relax (x )+6 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (5+x \right )}{x}\right )^{3} {\mathrm e}^{\frac {4}{x}} \ln \relax (x )-6 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (5+x \right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) {\mathrm e}^{\frac {4}{x}} \ln \relax (x )+42 i \pi x \,\mathrm {csgn}\left (i \left (5+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (5+x \right )}{x}\right )^{2} {\mathrm e}^{\frac {4}{x}} \ln \relax (x )-42 i \pi x \,\mathrm {csgn}\left (i \left (5+x \right )\right ) \mathrm {csgn}\left (\frac {i \left (5+x \right )}{x}\right ) \mathrm {csgn}\left (\frac {i}{x}\right ) {\mathrm e}^{\frac {4}{x}} \ln \relax (x )-42 i \pi x \mathrm {csgn}\left (\frac {i \left (5+x \right )}{x}\right )^{3} {\mathrm e}^{\frac {4}{x}} \ln \relax (x )+42 i \pi x \mathrm {csgn}\left (\frac {i \left (5+x \right )}{x}\right )^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) {\mathrm e}^{\frac {4}{x}} \ln \relax (x )+12 x^{2} {\mathrm e}^{\frac {4}{x}} \ln \relax (x )^{2}-84 x \,{\mathrm e}^{\frac {4}{x}} \ln \relax (x )^{2}\) | \(308\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 36, normalized size = 1.44 \begin {gather*} -12 \, {\left ({\left (x^{2} - 7 \, x\right )} \log \left (x + 5\right ) \log \relax (x) - {\left (x^{2} - 7 \, x\right )} \log \relax (x)^{2}\right )} e^{\frac {4}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} -\int \frac {\ln \relax (x)\,\left ({\mathrm {e}}^{4/x}\,\left (420\,x-60\,x^2\right )-{\mathrm {e}}^{4/x}\,\ln \left (\frac {x+5}{x}\right )\,\left (-24\,x^3+12\,x^2+324\,x-1680\right )\right )-{\mathrm {e}}^{4/x}\,\ln \left (\frac {x+5}{x}\right )\,\left (-12\,x^3+24\,x^2+420\,x\right )}{x^2+5\,x} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 6.85, size = 32, normalized size = 1.28 \begin {gather*} \left (- 12 x^{2} \log {\relax (x )} \log {\left (\frac {x + 5}{x} \right )} + 84 x \log {\relax (x )} \log {\left (\frac {x + 5}{x} \right )}\right ) e^{\frac {4}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________