Optimal. Leaf size=30 \[ \frac {e^4}{x \left (1-e^6+5 x+\frac {16}{-\frac {4}{3}+2 x}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.29, antiderivative size = 57, normalized size of antiderivative = 1.90, number of steps used = 8, number of rules used = 5, integrand size = 106, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {12, 2074, 638, 618, 206} \begin {gather*} \frac {e^4 (15 x+26)}{\left (11+e^6\right ) \left (15 x^2-\left (7+3 e^6\right ) x+2 \left (11+e^6\right )\right )}-\frac {e^4}{\left (11+e^6\right ) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 206
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^4 \int \frac {44-28 x+111 x^2-90 x^3+e^6 \left (4-12 x+9 x^2\right )}{484 x^2-308 x^3+709 x^4-210 x^5+225 x^6+e^{12} \left (4 x^2-12 x^3+9 x^4\right )+e^6 \left (88 x^2-160 x^3+102 x^4-90 x^5\right )} \, dx\\ &=e^4 \int \left (\frac {1}{\left (11+e^6\right ) x^2}+\frac {2 \left (421+69 e^6\right )-15 \left (59+3 e^6\right ) x}{\left (11+e^6\right ) \left (2 \left (11+e^6\right )-\left (7+3 e^6\right ) x+15 x^2\right )^2}+\frac {15}{\left (-11-e^6\right ) \left (2 \left (11+e^6\right )-\left (7+3 e^6\right ) x+15 x^2\right )}\right ) \, dx\\ &=-\frac {e^4}{\left (11+e^6\right ) x}+\frac {e^4 \int \frac {2 \left (421+69 e^6\right )-15 \left (59+3 e^6\right ) x}{\left (2 \left (11+e^6\right )+\left (-7-3 e^6\right ) x+15 x^2\right )^2} \, dx}{11+e^6}-\frac {\left (15 e^4\right ) \int \frac {1}{2 \left (11+e^6\right )-\left (7+3 e^6\right ) x+15 x^2} \, dx}{11+e^6}\\ &=-\frac {e^4}{\left (11+e^6\right ) x}+\frac {e^4 (26+15 x)}{\left (11+e^6\right ) \left (2 \left (11+e^6\right )-\left (7+3 e^6\right ) x+15 x^2\right )}+\frac {\left (15 e^4\right ) \int \frac {1}{2 \left (11+e^6\right )+\left (-7-3 e^6\right ) x+15 x^2} \, dx}{11+e^6}+\frac {\left (30 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{-1271-78 e^6+9 e^{12}-x^2} \, dx,x,-7-3 e^6+30 x\right )}{11+e^6}\\ &=-\frac {e^4}{\left (11+e^6\right ) x}+\frac {e^4 (26+15 x)}{\left (11+e^6\right ) \left (2 \left (11+e^6\right )-\left (7+3 e^6\right ) x+15 x^2\right )}-\frac {30 e^4 \tanh ^{-1}\left (\frac {7+3 e^6-30 x}{\sqrt {-1271-78 e^6+9 e^{12}}}\right )}{\left (11+e^6\right ) \sqrt {-1271-78 e^6+9 e^{12}}}-\frac {\left (30 e^4\right ) \operatorname {Subst}\left (\int \frac {1}{-1271-78 e^6+9 e^{12}-x^2} \, dx,x,-7-3 e^6+30 x\right )}{11+e^6}\\ &=-\frac {e^4}{\left (11+e^6\right ) x}+\frac {e^4 (26+15 x)}{\left (11+e^6\right ) \left (2 \left (11+e^6\right )-\left (7+3 e^6\right ) x+15 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 33, normalized size = 1.10 \begin {gather*} \frac {e^4 (-2+3 x)}{x \left (22+e^6 (2-3 x)-7 x+15 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.80, size = 37, normalized size = 1.23 \begin {gather*} \frac {{\left (3 \, x - 2\right )} e^{4}}{15 \, x^{3} - 7 \, x^{2} - {\left (3 \, x^{2} - 2 \, x\right )} e^{6} + 22 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 34, normalized size = 1.13
method | result | size |
risch | \(\frac {3 \,{\mathrm e}^{4} \left (\frac {2}{3}-x \right )}{\left (3 x \,{\mathrm e}^{6}-2 \,{\mathrm e}^{6}-15 x^{2}+7 x -22\right ) x}\) | \(34\) |
gosper | \(-\frac {\left (3 x -2\right ) {\mathrm e}^{4}}{x \left (3 x \,{\mathrm e}^{6}-2 \,{\mathrm e}^{6}-15 x^{2}+7 x -22\right )}\) | \(38\) |
norman | \(\frac {-3 x \,{\mathrm e}^{4}+2 \,{\mathrm e}^{4}}{x \left (3 x \,{\mathrm e}^{6}-2 \,{\mathrm e}^{6}-15 x^{2}+7 x -22\right )}\) | \(40\) |
default | \({\mathrm e}^{4} \left (-\frac {\munderset {\textit {\_R} =\RootOf \left (225 \textit {\_Z}^{4}+\left (-90 \,{\mathrm e}^{6}-210\right ) \textit {\_Z}^{3}+\left (102 \,{\mathrm e}^{6}+9 \,{\mathrm e}^{12}+709\right ) \textit {\_Z}^{2}+\left (-160 \,{\mathrm e}^{6}-12 \,{\mathrm e}^{12}-308\right ) \textit {\_Z} +88 \,{\mathrm e}^{6}+4 \,{\mathrm e}^{12}+484\right )}{\sum }\frac {\left (681472+225 \left (-1331-363 \,{\mathrm e}^{6}-33 \,{\mathrm e}^{12}-{\mathrm e}^{18}\right ) \textit {\_R}^{2}+780 \left (-1331-363 \,{\mathrm e}^{6}-33 \,{\mathrm e}^{12}-{\mathrm e}^{18}\right ) \textit {\_R} +329604 \,{\mathrm e}^{6}+56100 \,{\mathrm e}^{12}+4076 \,{\mathrm e}^{18}+108 \,{\mathrm e}^{24}\right ) \ln \left (x -\textit {\_R} \right )}{154+135 \textit {\_R}^{2} {\mathrm e}^{6}-450 \textit {\_R}^{3}-102 \textit {\_R} \,{\mathrm e}^{6}-9 \textit {\_R} \,{\mathrm e}^{12}+315 \textit {\_R}^{2}+80 \,{\mathrm e}^{6}+6 \,{\mathrm e}^{12}-709 \textit {\_R}}}{2 \left (22 \,{\mathrm e}^{6}+{\mathrm e}^{12}+121\right )^{2}}-\frac {1331+363 \,{\mathrm e}^{6}+33 \,{\mathrm e}^{12}+{\mathrm e}^{18}}{\left (22 \,{\mathrm e}^{6}+{\mathrm e}^{12}+121\right )^{2} x}\right )\) | \(202\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 34, normalized size = 1.13 \begin {gather*} \frac {{\left (3 \, x - 2\right )} e^{4}}{15 \, x^{3} - x^{2} {\left (3 \, e^{6} + 7\right )} + 2 \, x {\left (e^{6} + 11\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.39, size = 39, normalized size = 1.30 \begin {gather*} -\frac {2\,{\mathrm {e}}^4-3\,x\,{\mathrm {e}}^4}{15\,x^3+\left (-3\,{\mathrm {e}}^6-7\right )\,x^2+\left (2\,{\mathrm {e}}^6+22\right )\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.58, size = 37, normalized size = 1.23 \begin {gather*} - \frac {- 3 x e^{4} + 2 e^{4}}{15 x^{3} + x^{2} \left (- 3 e^{6} - 7\right ) + x \left (22 + 2 e^{6}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________