Optimal. Leaf size=28 \[ 2 \log \left (\frac {3 \log \left (\frac {4 \left (5-e^4-e^x\right )^2}{e^{10}}\right )}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.01, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 9, number of rules used = 8, integrand size = 79, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.101, Rules used = {6, 6741, 6688, 2282, 2390, 12, 2302, 29} \begin {gather*} 2 \log \left (-\log \left (\left (e^x-5+e^4\right )^2\right )+10-\log (4)\right )-2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 29
Rule 2282
Rule 2302
Rule 2390
Rule 6688
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^x x+\left (10-2 e^4-2 e^x\right ) \log \left (\frac {4 \left (5-e^4-e^x\right )^2}{e^{10}}\right )}{\left (e^x x+\left (-5+e^4\right ) x\right ) \log \left (\frac {4 \left (5-e^4-e^x\right )^2}{e^{10}}\right )} \, dx\\ &=\int \frac {4 e^x x+\left (10-2 e^4-2 e^x\right ) \log \left (\frac {4 \left (5-e^4-e^x\right )^2}{e^{10}}\right )}{\left (e^x x+\left (-5+e^4\right ) x\right ) \log \left (\frac {4 \left (-e^x+5 \left (1-\frac {e^4}{5}\right )\right )^2}{e^{10}}\right )} \, dx\\ &=\int \left (-\frac {2}{x}+\frac {4 e^x}{\left (e^x-5 \left (1-\frac {e^4}{5}\right )\right ) \left (-10 \left (1-\frac {\log (2)}{5}\right )+\log \left (\left (-5+e^4+e^x\right )^2\right )\right )}\right ) \, dx\\ &=-2 \log (x)+4 \int \frac {e^x}{\left (e^x-5 \left (1-\frac {e^4}{5}\right )\right ) \left (-10 \left (1-\frac {\log (2)}{5}\right )+\log \left (\left (-5+e^4+e^x\right )^2\right )\right )} \, dx\\ &=-2 \log (x)+4 \operatorname {Subst}\left (\int \frac {1}{\left (5-e^4-x\right ) \left (10 \left (1-\frac {\log (2)}{5}\right )-\log \left (\left (-5+e^4+x\right )^2\right )\right )} \, dx,x,e^x\right )\\ &=-2 \log (x)+4 \operatorname {Subst}\left (\int \frac {-5+e^4}{\left (5-e^4\right ) x \left (10 \left (1-\frac {\log (2)}{5}\right )-\log \left (x^2\right )\right )} \, dx,x,-5+e^4+e^x\right )\\ &=-2 \log (x)-4 \operatorname {Subst}\left (\int \frac {1}{x \left (10 \left (1-\frac {\log (2)}{5}\right )-\log \left (x^2\right )\right )} \, dx,x,-5+e^4+e^x\right )\\ &=-2 \log (x)+2 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,10 \left (1-\frac {\log (2)}{5}\right )-\log \left (\left (-5+e^4+e^x\right )^2\right )\right )\\ &=-2 \log (x)+2 \log \left (10-\log (4)-\log \left (\left (-5+e^4+e^x\right )^2\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.52, size = 27, normalized size = 0.96 \begin {gather*} -2 \log (x)+2 \log \left (10-\log (4)-\log \left (\left (-5+e^4+e^x\right )^2\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 33, normalized size = 1.18 \begin {gather*} -2 \, \log \relax (x) + 2 \, \log \left (\log \left (4 \, {\left (2 \, {\left (e^{4} - 5\right )} e^{x} + e^{8} - 10 \, e^{4} + e^{\left (2 \, x\right )} + 25\right )} e^{\left (-10\right )}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.40, size = 47, normalized size = 1.68 \begin {gather*} -2 \, \log \relax (x) + 2 \, \log \left (-2 \, \log \relax (2) - 2 \, \log \left (e^{4} \mathrm {sgn}\left (e^{4} + e^{x} - 5\right ) + e^{x} \mathrm {sgn}\left (e^{4} + e^{x} - 5\right ) - 5 \, \mathrm {sgn}\left (e^{4} + e^{x} - 5\right )\right ) + 10\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.37, size = 28, normalized size = 1.00
method | result | size |
default | \(-2 \ln \relax (x )+2 \ln \left (\ln \left (4 \left (-{\mathrm e}^{x}+5-{\mathrm e}^{4}\right )^{2} {\mathrm e}^{-10}\right )\right )\) | \(28\) |
norman | \(-2 \ln \relax (x )+2 \ln \left (\ln \left (4 \left (-{\mathrm e}^{x}+5-{\mathrm e}^{4}\right )^{2} {\mathrm e}^{-10}\right )\right )\) | \(28\) |
risch | \(-2 \ln \relax (x )+2 \ln \left (\ln \left ({\mathrm e}^{x}+{\mathrm e}^{4}-5\right )-\frac {i \left (\pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+{\mathrm e}^{4}-5\right )\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+{\mathrm e}^{4}-5\right )^{2}\right )-2 \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}+{\mathrm e}^{4}-5\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+{\mathrm e}^{4}-5\right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}+{\mathrm e}^{4}-5\right )^{2}\right )^{3}+4 i \ln \relax (2)-20 i\right )}{4}\right )\) | \(97\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 19, normalized size = 0.68 \begin {gather*} -2 \, \log \relax (x) + 2 \, \log \left (\log \relax (2) + \log \left (e^{4} + e^{x} - 5\right ) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.33, size = 21, normalized size = 0.75 \begin {gather*} 2\,\ln \left (\ln \left (4\,{\mathrm {e}}^{-10}\,{\left ({\mathrm {e}}^4+{\mathrm {e}}^x-5\right )}^2\right )\right )-2\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 24, normalized size = 0.86 \begin {gather*} - 2 \log {\relax (x )} + 2 \log {\left (\log {\left (\frac {4 \left (- e^{x} - e^{4} + 5\right )^{2}}{e^{10}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________