Optimal. Leaf size=24 \[ x \left (3 x-\frac {5}{\log \left (\frac {\left (-e^x+x\right )^2}{x^2}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.78, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^x (-10+10 x)+\left (-5 e^x+5 x\right ) \log \left (\frac {e^{2 x}-2 e^x x+x^2}{x^2}\right )+\left (6 e^x x-6 x^2\right ) \log ^2\left (\frac {e^{2 x}-2 e^x x+x^2}{x^2}\right )}{\left (e^x-x\right ) \log ^2\left (\frac {e^{2 x}-2 e^x x+x^2}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (6 x+\frac {10 e^x (-1+x)}{\left (e^x-x\right ) \log ^2\left (\frac {\left (e^x-x\right )^2}{x^2}\right )}-\frac {5}{\log \left (\frac {\left (e^x-x\right )^2}{x^2}\right )}\right ) \, dx\\ &=3 x^2-5 \int \frac {1}{\log \left (\frac {\left (e^x-x\right )^2}{x^2}\right )} \, dx+10 \int \frac {e^x (-1+x)}{\left (e^x-x\right ) \log ^2\left (\frac {\left (e^x-x\right )^2}{x^2}\right )} \, dx\\ &=3 x^2-5 \int \frac {1}{\log \left (\frac {\left (e^x-x\right )^2}{x^2}\right )} \, dx+10 \int \left (-\frac {e^x}{\left (e^x-x\right ) \log ^2\left (\frac {\left (e^x-x\right )^2}{x^2}\right )}+\frac {e^x x}{\left (e^x-x\right ) \log ^2\left (\frac {\left (e^x-x\right )^2}{x^2}\right )}\right ) \, dx\\ &=3 x^2-5 \int \frac {1}{\log \left (\frac {\left (e^x-x\right )^2}{x^2}\right )} \, dx-10 \int \frac {e^x}{\left (e^x-x\right ) \log ^2\left (\frac {\left (e^x-x\right )^2}{x^2}\right )} \, dx+10 \int \frac {e^x x}{\left (e^x-x\right ) \log ^2\left (\frac {\left (e^x-x\right )^2}{x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 25, normalized size = 1.04 \begin {gather*} 3 x^2-\frac {5 x}{\log \left (\frac {\left (e^x-x\right )^2}{x^2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.65, size = 48, normalized size = 2.00 \begin {gather*} \frac {3 \, x^{2} \log \left (\frac {x^{2} - 2 \, x e^{x} + e^{\left (2 \, x\right )}}{x^{2}}\right ) - 5 \, x}{\log \left (\frac {x^{2} - 2 \, x e^{x} + e^{\left (2 \, x\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 2.32, size = 48, normalized size = 2.00 \begin {gather*} \frac {3 \, x^{2} \log \left (\frac {x^{2} - 2 \, x e^{x} + e^{\left (2 \, x\right )}}{x^{2}}\right ) - 5 \, x}{\log \left (\frac {x^{2} - 2 \, x e^{x} + e^{\left (2 \, x\right )}}{x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.21, size = 49, normalized size = 2.04
method | result | size |
norman | \(\frac {-5 x +3 x^{2} \ln \left (\frac {{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x +x^{2}}{x^{2}}\right )}{\ln \left (\frac {{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x +x^{2}}{x^{2}}\right )}\) | \(49\) |
risch | \(3 x^{2}-\frac {10 i x}{\pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x \right )\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x \right )^{2}\right )+2 \pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x \right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x \right )^{2}\right )^{2}+\pi \mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x \right )^{2}\right )^{3}-\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}-x \right )^{2}}{x^{2}}\right )^{2}+\pi \,\mathrm {csgn}\left (i \left ({\mathrm e}^{x}-x \right )^{2}\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}-x \right )^{2}}{x^{2}}\right ) \mathrm {csgn}\left (\frac {i}{x^{2}}\right )+\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}-x \right )^{2}}{x^{2}}\right )^{3}-\pi \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x}-x \right )^{2}}{x^{2}}\right )^{2} \mathrm {csgn}\left (\frac {i}{x^{2}}\right )-\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-4 i \ln \relax (x )+4 i \ln \left (x -{\mathrm e}^{x}\right )}\) | \(258\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 39, normalized size = 1.62 \begin {gather*} \frac {6 \, x^{2} \log \relax (x) - 6 \, x^{2} \log \left (-x + e^{x}\right ) + 5 \, x}{2 \, {\left (\log \relax (x) - \log \left (-x + e^{x}\right )\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.94, size = 30, normalized size = 1.25 \begin {gather*} 3\,x^2-\frac {5\,x}{\ln \left (\frac {1}{x^2}\right )+\ln \left ({\mathrm {e}}^{2\,x}-2\,x\,{\mathrm {e}}^x+x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 27, normalized size = 1.12 \begin {gather*} 3 x^{2} - \frac {5 x}{\log {\left (\frac {x^{2} - 2 x e^{x} + e^{2 x}}{x^{2}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________