Optimal. Leaf size=23 \[ \left (-1-e^5-\frac {5 x}{3}-x^2+x^3\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 30, normalized size of antiderivative = 1.30, number of steps used = 10, number of rules used = 5, integrand size = 44, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {12, 14, 2356, 2295, 2304} \begin {gather*} x^3 \log (x)-x^2 \log (x)-\frac {5}{3} x \log (x)-\left (1+e^5\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2295
Rule 2304
Rule 2356
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \frac {-3-3 e^5-5 x-3 x^2+3 x^3+\left (-5 x-6 x^2+9 x^3\right ) \log (x)}{x} \, dx\\ &=\frac {1}{3} \int \left (\frac {-3 \left (1+e^5\right )-5 x-3 x^2+3 x^3}{x}+\left (-5-6 x+9 x^2\right ) \log (x)\right ) \, dx\\ &=\frac {1}{3} \int \frac {-3 \left (1+e^5\right )-5 x-3 x^2+3 x^3}{x} \, dx+\frac {1}{3} \int \left (-5-6 x+9 x^2\right ) \log (x) \, dx\\ &=\frac {1}{3} \int \left (-5-\frac {3 \left (1+e^5\right )}{x}-3 x+3 x^2\right ) \, dx+\frac {1}{3} \int \left (-5 \log (x)-6 x \log (x)+9 x^2 \log (x)\right ) \, dx\\ &=-\frac {5 x}{3}-\frac {x^2}{2}+\frac {x^3}{3}-\left (1+e^5\right ) \log (x)-\frac {5}{3} \int \log (x) \, dx-2 \int x \log (x) \, dx+3 \int x^2 \log (x) \, dx\\ &=-\left (\left (1+e^5\right ) \log (x)\right )-\frac {5}{3} x \log (x)-x^2 \log (x)+x^3 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 32, normalized size = 1.39 \begin {gather*} -\log (x)-e^5 \log (x)-\frac {5}{3} x \log (x)-x^2 \log (x)+x^3 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 23, normalized size = 1.00 \begin {gather*} \frac {1}{3} \, {\left (3 \, x^{3} - 3 \, x^{2} - 5 \, x - 3 \, e^{5} - 3\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.11, size = 29, normalized size = 1.26 \begin {gather*} x^{3} \log \relax (x) - x^{2} \log \relax (x) - \frac {5}{3} \, x \log \relax (x) - e^{5} \log \relax (x) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 1.26
method | result | size |
norman | \(x^{3} \ln \relax (x )+\left (-{\mathrm e}^{5}-1\right ) \ln \relax (x )-\frac {5 x \ln \relax (x )}{3}-x^{2} \ln \relax (x )\) | \(29\) |
default | \(x^{3} \ln \relax (x )-x^{2} \ln \relax (x )-\frac {5 x \ln \relax (x )}{3}-{\mathrm e}^{5} \ln \relax (x )-\ln \relax (x )\) | \(30\) |
risch | \(\frac {\left (3 x^{3}-3 x^{2}-5 x \right ) \ln \relax (x )}{3}-{\mathrm e}^{5} \ln \relax (x )-\ln \relax (x )\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.34, size = 29, normalized size = 1.26 \begin {gather*} x^{3} \log \relax (x) - x^{2} \log \relax (x) - \frac {5}{3} \, x \log \relax (x) - e^{5} \log \relax (x) - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.43, size = 23, normalized size = 1.00 \begin {gather*} -\frac {\ln \relax (x)\,\left (-3\,x^3+3\,x^2+5\,x+3\,{\mathrm {e}}^5+3\right )}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 24, normalized size = 1.04 \begin {gather*} \left (x^{3} - x^{2} - \frac {5 x}{3}\right ) \log {\relax (x )} + \left (- e^{5} - 1\right ) \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________