Optimal. Leaf size=23 \[ \left (x+\frac {1}{25} e^{2 x} x\right )^{\frac {1}{\log \left (\frac {2+x}{2}\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 13.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {25^{-\frac {1}{\log \left (\frac {2+x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (\frac {2+x}{2}\right )}} \left (\left (50+25 x+e^{2 x} \left (2+5 x+2 x^2\right )\right ) \log \left (\frac {2+x}{2}\right )+\left (-25 x-e^{2 x} x\right ) \log \left (\frac {1}{25} \left (25 x+e^{2 x} x\right )\right )\right )}{\left (50 x+25 x^2+e^{2 x} \left (2 x+x^2\right )\right ) \log ^2\left (\frac {2+x}{2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (\left (50+25 x+e^{2 x} \left (2+5 x+2 x^2\right )\right ) \log \left (\frac {2+x}{2}\right )+\left (-25 x-e^{2 x} x\right ) \log \left (\frac {1}{25} \left (25 x+e^{2 x} x\right )\right )\right )}{\left (25+e^{2 x}\right ) x (2+x) \log ^2\left (1+\frac {x}{2}\right )} \, dx\\ &=\int \left (\frac {2\ 25^{1-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{\left (-25-e^{2 x}\right ) \log \left (1+\frac {x}{2}\right )}+\frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (2 \log \left (\frac {2+x}{2}\right )+5 x \log \left (\frac {2+x}{2}\right )+2 x^2 \log \left (\frac {2+x}{2}\right )-x \log \left (x+\frac {1}{25} e^{2 x} x\right )\right )}{x (2+x) \log ^2\left (1+\frac {x}{2}\right )}\right ) \, dx\\ &=2 \int \frac {25^{1-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{\left (-25-e^{2 x}\right ) \log \left (1+\frac {x}{2}\right )} \, dx+\int \frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (2 \log \left (\frac {2+x}{2}\right )+5 x \log \left (\frac {2+x}{2}\right )+2 x^2 \log \left (\frac {2+x}{2}\right )-x \log \left (x+\frac {1}{25} e^{2 x} x\right )\right )}{x (2+x) \log ^2\left (1+\frac {x}{2}\right )} \, dx\\ &=2 \int \frac {25^{1-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{\left (-25-e^{2 x}\right ) \log \left (1+\frac {x}{2}\right )} \, dx+\int \left (\frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} (1+2 x) \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{x \log \left (1+\frac {x}{2}\right )}+\frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}} \log \left (\frac {1}{25} \left (25+e^{2 x}\right ) x\right )}{(-2-x) \log ^2\left (1+\frac {x}{2}\right )}\right ) \, dx\\ &=2 \int \frac {25^{1-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{\left (-25-e^{2 x}\right ) \log \left (1+\frac {x}{2}\right )} \, dx+\int \frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} (1+2 x) \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{x \log \left (1+\frac {x}{2}\right )} \, dx+\int \frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}} \log \left (\frac {1}{25} \left (25+e^{2 x}\right ) x\right )}{(-2-x) \log ^2\left (1+\frac {x}{2}\right )} \, dx\\ &=2 \int \frac {25^{1-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{\left (-25-e^{2 x}\right ) \log \left (1+\frac {x}{2}\right )} \, dx+\int \left (\frac {2\ 25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{\log \left (1+\frac {x}{2}\right )}+\frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{x \log \left (1+\frac {x}{2}\right )}\right ) \, dx+\int \frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}} \log \left (\frac {1}{25} \left (25+e^{2 x}\right ) x\right )}{(-2-x) \log ^2\left (1+\frac {x}{2}\right )} \, dx\\ &=2 \int \frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{\log \left (1+\frac {x}{2}\right )} \, dx+2 \int \frac {25^{1-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{\left (-25-e^{2 x}\right ) \log \left (1+\frac {x}{2}\right )} \, dx+\int \frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}}}{x \log \left (1+\frac {x}{2}\right )} \, dx+\int \frac {25^{-\frac {1}{\log \left (1+\frac {x}{2}\right )}} \left (25 x+e^{2 x} x\right )^{\frac {1}{\log \left (1+\frac {x}{2}\right )}} \log \left (\frac {1}{25} \left (25+e^{2 x}\right ) x\right )}{(-2-x) \log ^2\left (1+\frac {x}{2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 23, normalized size = 1.00 \begin {gather*} \left (x+\frac {1}{25} e^{2 x} x\right )^{\frac {1}{\log \left (\frac {2+x}{2}\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 18, normalized size = 0.78 \begin {gather*} {\left (\frac {1}{25} \, x e^{\left (2 \, x\right )} + x\right )}^{\left (\frac {1}{\log \left (\frac {1}{2} \, x + 1\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (x e^{\left (2 \, x\right )} + 25 \, x\right )} \log \left (\frac {1}{25} \, x e^{\left (2 \, x\right )} + x\right ) - {\left ({\left (2 \, x^{2} + 5 \, x + 2\right )} e^{\left (2 \, x\right )} + 25 \, x + 50\right )} \log \left (\frac {1}{2} \, x + 1\right )\right )} {\left (\frac {1}{25} \, x e^{\left (2 \, x\right )} + x\right )}^{\left (\frac {1}{\log \left (\frac {1}{2} \, x + 1\right )}\right )}}{{\left (25 \, x^{2} + {\left (x^{2} + 2 \, x\right )} e^{\left (2 \, x\right )} + 50 \, x\right )} \log \left (\frac {1}{2} \, x + 1\right )^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.32, size = 126, normalized size = 5.48
method | result | size |
risch | \({\mathrm e}^{-\frac {i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{2 x}+25\right )\right )^{3}-i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{2 x}+25\right )\right )^{2} \mathrm {csgn}\left (i x \right )-i \pi \mathrm {csgn}\left (i x \left ({\mathrm e}^{2 x}+25\right )\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{2 x}+25\right )\right )+i \pi \,\mathrm {csgn}\left (i x \left ({\mathrm e}^{2 x}+25\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{2 x}+25\right )\right )-2 \ln \relax (x )+4 \ln \relax (5)-2 \ln \left ({\mathrm e}^{2 x}+25\right )}{2 \ln \left (1+\frac {x}{2}\right )}}\) | \(126\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.60, size = 52, normalized size = 2.26 \begin {gather*} e^{\left (\frac {2 \, \log \relax (5)}{\log \relax (2) - \log \left (x + 2\right )} - \frac {\log \relax (x)}{\log \relax (2) - \log \left (x + 2\right )} - \frac {\log \left (e^{\left (2 \, x\right )} + 25\right )}{\log \relax (2) - \log \left (x + 2\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.54, size = 18, normalized size = 0.78 \begin {gather*} {\left (x+\frac {x\,{\mathrm {e}}^{2\,x}}{25}\right )}^{\frac {1}{\ln \left (\frac {x}{2}+1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________