Optimal. Leaf size=24 \[ \frac {3 x}{\log ^2\left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \]
________________________________________________________________________________________
Rubi [F] time = 6.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-12 e^{e^x}+(-6 x+6 x \log (3)) \log \left (x^2\right )-6 e^{e^x+x} x \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )+\left ((3 x-3 x \log (3)) \log \left (x^2\right )+3 e^{e^x} \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )\right ) \log \left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}{\left ((x-x \log (3)) \log \left (x^2\right )+e^{e^x} \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-12 e^{e^x}+(-6 x+6 x \log (3)) \log \left (x^2\right )-6 e^{e^x+x} x \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )+\left ((3 x-3 x \log (3)) \log \left (x^2\right )+3 e^{e^x} \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )\right ) \log \left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}{\log \left (x^2\right ) \left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx\\ &=\int \left (\frac {6 e^{e^x+x} x \log \left (\log \left (x^2\right )\right )}{\left (-x (1-\log (3))-e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}+\frac {3 \left (-4 e^{e^x}-2 x (1-\log (3)) \log \left (x^2\right )+x (1-\log (3)) \log \left (x^2\right ) \log \left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )+e^{e^x} \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \log \left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )\right )}{\log \left (x^2\right ) \left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}\right ) \, dx\\ &=3 \int \frac {-4 e^{e^x}-2 x (1-\log (3)) \log \left (x^2\right )+x (1-\log (3)) \log \left (x^2\right ) \log \left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )+e^{e^x} \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \log \left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}{\log \left (x^2\right ) \left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx+6 \int \frac {e^{e^x+x} x \log \left (\log \left (x^2\right )\right )}{\left (-x (1-\log (3))-e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx\\ &=3 \int \left (\frac {2 x (1-\log (3)) \left (2-\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )\right )}{\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}+\frac {-4+\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \log \left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}{\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}\right ) \, dx+6 \int \frac {e^{e^x+x} x \log \left (\log \left (x^2\right )\right )}{\left (-x (1-\log (3))-e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx\\ &=3 \int \frac {-4+\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \log \left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}{\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx+6 \int \frac {e^{e^x+x} x \log \left (\log \left (x^2\right )\right )}{\left (-x (1-\log (3))-e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx+(6 (1-\log (3))) \int \frac {x \left (2-\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )\right )}{\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx\\ &=3 \int \left (-\frac {4}{\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}+\frac {1}{\log ^2\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}\right ) \, dx+6 \int \frac {e^{e^x+x} x \log \left (\log \left (x^2\right )\right )}{\left (-x (1-\log (3))-e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx+(6 (1-\log (3))) \int \left (\frac {x}{\left (-x (1-\log (3))-e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}+\frac {2 x}{\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )}\right ) \, dx\\ &=3 \int \frac {1}{\log ^2\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx+6 \int \frac {e^{e^x+x} x \log \left (\log \left (x^2\right )\right )}{\left (-x (1-\log (3))-e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx-12 \int \frac {1}{\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx+(6 (1-\log (3))) \int \frac {x}{\left (-x (1-\log (3))-e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx+(12 (1-\log (3))) \int \frac {x}{\log \left (x^2\right ) \log \left (\log \left (x^2\right )\right ) \left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right ) \log ^3\left (x (1-\log (3))+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 24, normalized size = 1.00 \begin {gather*} \frac {3 x}{\log ^2\left (x-x \log (3)+e^{e^x} \log \left (\log \left (x^2\right )\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 36, normalized size = 1.50 \begin {gather*} \frac {3 \, x}{\log \left (-{\left ({\left (x \log \relax (3) - x\right )} e^{x} - e^{\left (x + e^{x}\right )} \log \left (\log \left (x^{2}\right )\right )\right )} e^{\left (-x\right )}\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.98, size = 52, normalized size = 2.17
method | result | size |
risch | \(\frac {3 x}{\ln \left ({\mathrm e}^{{\mathrm e}^{x}} \ln \left (2 \ln \relax (x )-\frac {i \pi \,\mathrm {csgn}\left (i x^{2}\right ) \left (-\mathrm {csgn}\left (i x^{2}\right )+\mathrm {csgn}\left (i x \right )\right )^{2}}{2}\right )-x \ln \relax (3)+x \right )^{2}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.86, size = 27, normalized size = 1.12 \begin {gather*} \frac {3 \, x}{\log \left (-x {\left (\log \relax (3) - 1\right )} + e^{\left (e^{x}\right )} \log \relax (2) + e^{\left (e^{x}\right )} \log \left (\log \relax (x)\right )\right )^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {12\,{\mathrm {e}}^{{\mathrm {e}}^x}+\ln \left (x^2\right )\,\left (6\,x-6\,x\,\ln \relax (3)\right )-\ln \left (x-x\,\ln \relax (3)+{\mathrm {e}}^{{\mathrm {e}}^x}\,\ln \left (\ln \left (x^2\right )\right )\right )\,\left (\ln \left (x^2\right )\,\left (3\,x-3\,x\,\ln \relax (3)\right )+3\,\ln \left (x^2\right )\,{\mathrm {e}}^{{\mathrm {e}}^x}\,\ln \left (\ln \left (x^2\right )\right )\right )+6\,x\,\ln \left (x^2\right )\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^x\,\ln \left (\ln \left (x^2\right )\right )}{{\ln \left (x-x\,\ln \relax (3)+{\mathrm {e}}^{{\mathrm {e}}^x}\,\ln \left (\ln \left (x^2\right )\right )\right )}^3\,\left (\ln \left (x^2\right )\,\left (x-x\,\ln \relax (3)\right )+\ln \left (x^2\right )\,{\mathrm {e}}^{{\mathrm {e}}^x}\,\ln \left (\ln \left (x^2\right )\right )\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________