Optimal. Leaf size=30 \[ \frac {1}{2} \left (-e^4+\frac {1}{3} \left (\left (3+e^{3 x}+e^{x^2}\right )^2+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.09, antiderivative size = 49, normalized size of antiderivative = 1.63, number of steps used = 9, number of rules used = 5, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {12, 2194, 2209, 6742, 2236} \begin {gather*} e^{x^2}+\frac {e^{2 x^2}}{6}+\frac {1}{3} e^{x^2+3 x}+\frac {x}{6}+e^{3 x}+\frac {e^{6 x}}{6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2209
Rule 2236
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{6} \int \left (1+18 e^{3 x}+6 e^{6 x}+4 e^{2 x^2} x+e^{x^2} \left (12 x+e^{3 x} (6+4 x)\right )\right ) \, dx\\ &=\frac {x}{6}+\frac {1}{6} \int e^{x^2} \left (12 x+e^{3 x} (6+4 x)\right ) \, dx+\frac {2}{3} \int e^{2 x^2} x \, dx+3 \int e^{3 x} \, dx+\int e^{6 x} \, dx\\ &=e^{3 x}+\frac {e^{6 x}}{6}+\frac {e^{2 x^2}}{6}+\frac {x}{6}+\frac {1}{6} \int \left (12 e^{x^2} x+2 e^{3 x+x^2} (3+2 x)\right ) \, dx\\ &=e^{3 x}+\frac {e^{6 x}}{6}+\frac {e^{2 x^2}}{6}+\frac {x}{6}+\frac {1}{3} \int e^{3 x+x^2} (3+2 x) \, dx+2 \int e^{x^2} x \, dx\\ &=e^{3 x}+\frac {e^{6 x}}{6}+e^{x^2}+\frac {e^{2 x^2}}{6}+\frac {1}{3} e^{3 x+x^2}+\frac {x}{6}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 49, normalized size = 1.63 \begin {gather*} e^{3 x}+\frac {e^{6 x}}{6}+e^{x^2}+\frac {e^{2 x^2}}{6}+\frac {1}{3} e^{3 x+x^2}+\frac {x}{6} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 34, normalized size = 1.13 \begin {gather*} \frac {1}{3} \, {\left (e^{\left (3 \, x\right )} + 3\right )} e^{\left (x^{2}\right )} + \frac {1}{6} \, x + \frac {1}{6} \, e^{\left (2 \, x^{2}\right )} + \frac {1}{6} \, e^{\left (6 \, x\right )} + e^{\left (3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.10, size = 36, normalized size = 1.20 \begin {gather*} \frac {1}{6} \, x + \frac {1}{6} \, e^{\left (2 \, x^{2}\right )} + \frac {1}{3} \, e^{\left (x^{2} + 3 \, x\right )} + e^{\left (x^{2}\right )} + \frac {1}{6} \, e^{\left (6 \, x\right )} + e^{\left (3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 35, normalized size = 1.17
method | result | size |
risch | \(\frac {x}{6}+\frac {{\mathrm e}^{2 x^{2}}}{6}+\frac {{\mathrm e}^{6 x}}{6}+\frac {{\mathrm e}^{\left (3+x \right ) x}}{3}+{\mathrm e}^{x^{2}}+{\mathrm e}^{3 x}\) | \(35\) |
default | \(\frac {x}{6}+\frac {{\mathrm e}^{6 x}}{6}+\frac {{\mathrm e}^{2 x^{2}}}{6}+{\mathrm e}^{x^{2}}+\frac {{\mathrm e}^{x^{2}+3 x}}{3}+{\mathrm e}^{3 x}\) | \(39\) |
norman | \(\frac {x}{6}+\frac {{\mathrm e}^{2 x^{2}}}{6}+\frac {{\mathrm e}^{6 x}}{6}+\frac {{\mathrm e}^{x^{2}} {\mathrm e}^{3 x}}{3}+{\mathrm e}^{x^{2}}+{\mathrm e}^{3 x}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 34, normalized size = 1.13 \begin {gather*} \frac {1}{3} \, {\left (e^{\left (3 \, x\right )} + 3\right )} e^{\left (x^{2}\right )} + \frac {1}{6} \, x + \frac {1}{6} \, e^{\left (2 \, x^{2}\right )} + \frac {1}{6} \, e^{\left (6 \, x\right )} + e^{\left (3 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 36, normalized size = 1.20 \begin {gather*} \frac {x}{6}+{\mathrm {e}}^{3\,x}+\frac {{\mathrm {e}}^{6\,x}}{6}+{\mathrm {e}}^{x^2}+\frac {{\mathrm {e}}^{x^2+3\,x}}{3}+\frac {{\mathrm {e}}^{2\,x^2}}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.22, size = 37, normalized size = 1.23 \begin {gather*} \frac {x}{6} + \frac {\left (6 e^{3 x} + 18\right ) e^{x^{2}}}{18} + \frac {e^{6 x}}{6} + e^{3 x} + \frac {e^{2 x^{2}}}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________