Optimal. Leaf size=21 \[ \frac {1}{1-e^{x \left (2+\left (-\frac {8}{3}+x\right ) x\right )^2}} \]
________________________________________________________________________________________
Rubi [A] time = 3.53, antiderivative size = 38, normalized size of antiderivative = 1.81, number of steps used = 4, number of rules used = 4, integrand size = 119, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {6688, 12, 6711, 32} \begin {gather*} -\frac {1}{1-e^{-x^5-\frac {100 x^3}{9}+\frac {16}{3} \left (x^2+2\right ) x^2-4 x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{9} x \left (6+8 x+3 x^2\right )^2} \left (12-64 x+100 x^2-64 x^3+15 x^4\right )}{3 \left (e^{\frac {16}{3} x^2 \left (2+x^2\right )}-e^{4 x+\frac {100 x^3}{9}+x^5}\right )^2} \, dx\\ &=\frac {1}{3} \int \frac {e^{\frac {1}{9} x \left (6+8 x+3 x^2\right )^2} \left (12-64 x+100 x^2-64 x^3+15 x^4\right )}{\left (e^{\frac {16}{3} x^2 \left (2+x^2\right )}-e^{4 x+\frac {100 x^3}{9}+x^5}\right )^2} \, dx\\ &=-\operatorname {Subst}\left (\int \frac {1}{(-1+x)^2} \, dx,x,e^{-4 x-\frac {100 x^3}{9}-x^5+\frac {16}{3} x^2 \left (2+x^2\right )}\right )\\ &=-\frac {1}{1-e^{-4 x-\frac {100 x^3}{9}-x^5+\frac {16}{3} x^2 \left (2+x^2\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 1.43, size = 53, normalized size = 2.52 \begin {gather*} -\frac {e^{4 x+\frac {100 x^3}{9}+x^5}}{-e^{\frac {16}{3} x^2 \left (2+x^2\right )}+e^{4 x+\frac {100 x^3}{9}+x^5}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 29, normalized size = 1.38 \begin {gather*} -\frac {1}{e^{\left (x^{5} - \frac {16}{3} \, x^{4} + \frac {100}{9} \, x^{3} - \frac {32}{3} \, x^{2} + 4 \, x\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.98, size = 29, normalized size = 1.38 \begin {gather*} -\frac {1}{e^{\left (x^{5} - \frac {16}{3} \, x^{4} + \frac {100}{9} \, x^{3} - \frac {32}{3} \, x^{2} + 4 \, x\right )} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 23, normalized size = 1.10
method | result | size |
risch | \(-\frac {1}{{\mathrm e}^{\frac {x \left (3 x^{2}-8 x +6\right )^{2}}{9}}-1}\) | \(23\) |
norman | \(-\frac {1}{{\mathrm e}^{x^{5}-\frac {16}{3} x^{4}+\frac {100}{9} x^{3}-\frac {32}{3} x^{2}+4 x}-1}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 45, normalized size = 2.14 \begin {gather*} -\frac {e^{\left (x^{5} + \frac {100}{9} \, x^{3} + 4 \, x\right )}}{e^{\left (x^{5} + \frac {100}{9} \, x^{3} + 4 \, x\right )} - e^{\left (\frac {16}{3} \, x^{4} + \frac {32}{3} \, x^{2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.35, size = 29, normalized size = 1.38 \begin {gather*} -\frac {1}{{\mathrm {e}}^{x^5-\frac {16\,x^4}{3}+\frac {100\,x^3}{9}-\frac {32\,x^2}{3}+4\,x}-1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.20, size = 32, normalized size = 1.52 \begin {gather*} - \frac {1}{e^{x^{5} - \frac {16 x^{4}}{3} + \frac {100 x^{3}}{9} - \frac {32 x^{2}}{3} + 4 x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________