Optimal. Leaf size=20 \[ \log \left (x \sqrt [x \log \left (\frac {16}{e^{25}}+x\right )]{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.72, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (\frac {16}{e^{25}}+x\right ) \log \left (\frac {16}{e^{25}}+x\right )+\left (\frac {16 x}{e^{25}}+x^2\right ) \log (x) \log ^2\left (\frac {16}{e^{25}}+x\right )+\left (-x \log (x)+\left (-\frac {16}{e^{25}}-x\right ) \log (x) \log \left (\frac {16}{e^{25}}+x\right )\right ) \log (\log (x))}{\left (\frac {16 x^2}{e^{25}}+x^3\right ) \log (x) \log ^2\left (\frac {16}{e^{25}}+x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (\frac {16}{e^{25}}+x\right ) \log \left (\frac {16}{e^{25}}+x\right )+\left (\frac {16 x}{e^{25}}+x^2\right ) \log (x) \log ^2\left (\frac {16}{e^{25}}+x\right )+\left (-x \log (x)+\left (-\frac {16}{e^{25}}-x\right ) \log (x) \log \left (\frac {16}{e^{25}}+x\right )\right ) \log (\log (x))}{x^2 \left (\frac {16}{e^{25}}+x\right ) \log (x) \log ^2\left (\frac {16}{e^{25}}+x\right )} \, dx\\ &=\int \frac {x-\frac {e^{25} x \log (\log (x))}{\left (16+e^{25} x\right ) \log ^2\left (\frac {16}{e^{25}}+x\right )}+\frac {1-\log (x) \log (\log (x))}{\log (x) \log \left (\frac {16}{e^{25}}+x\right )}}{x^2} \, dx\\ &=\int \left (\frac {1+x \log (x) \log \left (\frac {16}{e^{25}}+x\right )}{x^2 \log (x) \log \left (\frac {16}{e^{25}}+x\right )}-\frac {\left (e^{25} x+16 \log \left (\frac {16}{e^{25}}+x\right )+e^{25} x \log \left (\frac {16}{e^{25}}+x\right )\right ) \log (\log (x))}{x^2 \left (16+e^{25} x\right ) \log ^2\left (\frac {16}{e^{25}}+x\right )}\right ) \, dx\\ &=\int \frac {1+x \log (x) \log \left (\frac {16}{e^{25}}+x\right )}{x^2 \log (x) \log \left (\frac {16}{e^{25}}+x\right )} \, dx-\int \frac {\left (e^{25} x+16 \log \left (\frac {16}{e^{25}}+x\right )+e^{25} x \log \left (\frac {16}{e^{25}}+x\right )\right ) \log (\log (x))}{x^2 \left (16+e^{25} x\right ) \log ^2\left (\frac {16}{e^{25}}+x\right )} \, dx\\ &=\int \frac {x+\frac {1}{\log (x) \log \left (\frac {16}{e^{25}}+x\right )}}{x^2} \, dx-\int \frac {\left (\frac {e^{25} x}{16+e^{25} x}+\log \left (\frac {16}{e^{25}}+x\right )\right ) \log (\log (x))}{x^2 \log ^2\left (\frac {16}{e^{25}}+x\right )} \, dx\\ &=\int \left (\frac {1}{x}+\frac {1}{x^2 \log (x) \log \left (\frac {16}{e^{25}}+x\right )}\right ) \, dx-\int \left (\frac {e^{25} \log (\log (x))}{x \left (16+e^{25} x\right ) \log ^2\left (\frac {16}{e^{25}}+x\right )}+\frac {\log (\log (x))}{x^2 \log \left (\frac {16}{e^{25}}+x\right )}\right ) \, dx\\ &=\log (x)-e^{25} \int \frac {\log (\log (x))}{x \left (16+e^{25} x\right ) \log ^2\left (\frac {16}{e^{25}}+x\right )} \, dx+\int \frac {1}{x^2 \log (x) \log \left (\frac {16}{e^{25}}+x\right )} \, dx-\int \frac {\log (\log (x))}{x^2 \log \left (\frac {16}{e^{25}}+x\right )} \, dx\\ &=\log (x)-e^{25} \int \left (\frac {\log (\log (x))}{16 x \log ^2\left (\frac {16}{e^{25}}+x\right )}-\frac {e^{25} \log (\log (x))}{16 \left (16+e^{25} x\right ) \log ^2\left (\frac {16}{e^{25}}+x\right )}\right ) \, dx+\int \frac {1}{x^2 \log (x) \log \left (\frac {16}{e^{25}}+x\right )} \, dx-\int \frac {\log (\log (x))}{x^2 \log \left (\frac {16}{e^{25}}+x\right )} \, dx\\ &=\log (x)-\frac {1}{16} e^{25} \int \frac {\log (\log (x))}{x \log ^2\left (\frac {16}{e^{25}}+x\right )} \, dx+\frac {1}{16} e^{50} \int \frac {\log (\log (x))}{\left (16+e^{25} x\right ) \log ^2\left (\frac {16}{e^{25}}+x\right )} \, dx+\int \frac {1}{x^2 \log (x) \log \left (\frac {16}{e^{25}}+x\right )} \, dx-\int \frac {\log (\log (x))}{x^2 \log \left (\frac {16}{e^{25}}+x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 20, normalized size = 1.00 \begin {gather*} \log (x)+\frac {\log (\log (x))}{x \log \left (\frac {16}{e^{25}}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 34, normalized size = 1.70 \begin {gather*} \frac {x \log \left (x + e^{\left (4 \, \log \relax (2) - 25\right )}\right ) \log \relax (x) + \log \left (\log \relax (x)\right )}{x \log \left (x + e^{\left (4 \, \log \relax (2) - 25\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 36, normalized size = 1.80 \begin {gather*} \frac {x \log \left (x e^{25} + 16\right ) \log \relax (x) - 25 \, x \log \relax (x) + \log \left (\log \relax (x)\right )}{x \log \left (x e^{25} + 16\right ) - 25 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.28, size = 20, normalized size = 1.00
method | result | size |
risch | \(\frac {\ln \left (\ln \relax (x )\right )}{x \ln \left (16 \,{\mathrm e}^{-25}+x \right )}+\ln \relax (x )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 22, normalized size = 1.10 \begin {gather*} \frac {\log \left (\log \relax (x)\right )}{x \log \left (x e^{25} + 16\right ) - 25 \, x} + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.91, size = 19, normalized size = 0.95 \begin {gather*} \ln \relax (x)+\frac {\ln \left (\ln \relax (x)\right )}{x\,\ln \left (x+16\,{\mathrm {e}}^{-25}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.66, size = 17, normalized size = 0.85 \begin {gather*} \log {\relax (x )} + \frac {\log {\left (\log {\relax (x )} \right )}}{x \log {\left (x + \frac {16}{e^{25}} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________