Optimal. Leaf size=20 \[ \left (\frac {1}{144} \left (e^{2 x}+\frac {4}{x}\right )+x\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 25, normalized size of antiderivative = 1.25, number of steps used = 10, number of rules used = 4, integrand size = 41, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.098, Rules used = {12, 14, 2288, 2334} \begin {gather*} \frac {1}{144} e^{2 x} \log (x)+\frac {1}{36} \left (36 x+\frac {1}{x}\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2288
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{144} \int \frac {4+e^{2 x} x+144 x^2+\left (-4+144 x^2+2 e^{2 x} x^2\right ) \log (x)}{x^2} \, dx\\ &=\frac {1}{144} \int \left (\frac {e^{2 x} (1+2 x \log (x))}{x}+\frac {4 \left (1+36 x^2-\log (x)+36 x^2 \log (x)\right )}{x^2}\right ) \, dx\\ &=\frac {1}{144} \int \frac {e^{2 x} (1+2 x \log (x))}{x} \, dx+\frac {1}{36} \int \frac {1+36 x^2-\log (x)+36 x^2 \log (x)}{x^2} \, dx\\ &=\frac {1}{144} e^{2 x} \log (x)+\frac {1}{36} \int \left (\frac {1+36 x^2}{x^2}+\frac {\left (-1+36 x^2\right ) \log (x)}{x^2}\right ) \, dx\\ &=\frac {1}{144} e^{2 x} \log (x)+\frac {1}{36} \int \frac {1+36 x^2}{x^2} \, dx+\frac {1}{36} \int \frac {\left (-1+36 x^2\right ) \log (x)}{x^2} \, dx\\ &=\frac {1}{144} e^{2 x} \log (x)+\frac {1}{36} \left (\frac {1}{x}+36 x\right ) \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 25, normalized size = 1.25 \begin {gather*} \frac {1}{144} \left (e^{2 x} \log (x)+\frac {4 \log (x)}{x}+144 x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 20, normalized size = 1.00 \begin {gather*} \frac {{\left (144 \, x^{2} + x e^{\left (2 \, x\right )} + 4\right )} \log \relax (x)}{144 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 25, normalized size = 1.25 \begin {gather*} \frac {144 \, x^{2} \log \relax (x) + x e^{\left (2 \, x\right )} \log \relax (x) + 4 \, \log \relax (x)}{144 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 21, normalized size = 1.05
method | result | size |
default | \(\frac {{\mathrm e}^{2 x} \ln \relax (x )}{144}+x \ln \relax (x )+\frac {\ln \relax (x )}{36 x}\) | \(21\) |
risch | \(\frac {\left (x \,{\mathrm e}^{2 x}+144 x^{2}+4\right ) \ln \relax (x )}{144 x}\) | \(21\) |
norman | \(\frac {x^{2} \ln \relax (x )+\frac {x \,{\mathrm e}^{2 x} \ln \relax (x )}{144}+\frac {\ln \relax (x )}{36}}{x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 20, normalized size = 1.00 \begin {gather*} x \log \relax (x) + \frac {1}{144} \, e^{\left (2 \, x\right )} \log \relax (x) + \frac {\log \relax (x)}{36 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.37, size = 20, normalized size = 1.00 \begin {gather*} \frac {\ln \relax (x)\,\left (x\,{\mathrm {e}}^{2\,x}+144\,x^2+4\right )}{144\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 22, normalized size = 1.10 \begin {gather*} \frac {e^{2 x} \log {\relax (x )}}{144} + \frac {\left (36 x^{2} + 1\right ) \log {\relax (x )}}{36 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________