Optimal. Leaf size=23 \[ 1+\frac {1}{-4+\left ((3-x) x \left (-5+e^x+2 x\right )\right )^x} \]
________________________________________________________________________________________
Rubi [A] time = 1.19, antiderivative size = 24, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 3, integrand size = 219, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.014, Rules used = {6688, 6708, 32} \begin {gather*} -\frac {1}{4-\left (-\left ((x-3) x \left (2 x+e^x-5\right )\right )\right )^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 32
Rule 6688
Rule 6708
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (-\left ((-3+x) x \left (-5+e^x+2 x\right )\right )\right )^{-1+x} \left (15-22 x+6 x^2+e^x \left (-3-x+x^2\right )+(-3+x) \left (-5+e^x+2 x\right ) \log \left (-\left ((-3+x) x \left (-5+e^x+2 x\right )\right )\right )\right )}{\left (4-\left (-\left ((-3+x) x \left (-5+e^x+2 x\right )\right )\right )^x\right )^2} \, dx\\ &=\operatorname {Subst}\left (\int \frac {1}{(4+x)^2} \, dx,x,-\left (-\left ((-3+x) x \left (-5+e^x+2 x\right )\right )\right )^x\right )\\ &=-\frac {1}{4-\left (-\left ((-3+x) x \left (-5+e^x+2 x\right )\right )\right )^x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 20, normalized size = 0.87 \begin {gather*} \frac {1}{-4+\left (-\left ((-3+x) x \left (-5+e^x+2 x\right )\right )\right )^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 31, normalized size = 1.35 \begin {gather*} \frac {1}{{\left (-2 \, x^{3} + 11 \, x^{2} - {\left (x^{2} - 3 \, x\right )} e^{x} - 15 \, x\right )}^{x} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (6 \, x^{2} + {\left (x^{2} - x - 3\right )} e^{x} + {\left (2 \, x^{2} + {\left (x - 3\right )} e^{x} - 11 \, x + 15\right )} \log \left (-2 \, x^{3} + 11 \, x^{2} - {\left (x^{2} - 3 \, x\right )} e^{x} - 15 \, x\right ) - 22 \, x + 15\right )} {\left (-2 \, x^{3} + 11 \, x^{2} - {\left (x^{2} - 3 \, x\right )} e^{x} - 15 \, x\right )}^{x}}{{\left (2 \, x^{2} + {\left (x - 3\right )} e^{x} - 11 \, x + 15\right )} {\left (-2 \, x^{3} + 11 \, x^{2} - {\left (x^{2} - 3 \, x\right )} e^{x} - 15 \, x\right )}^{2 \, x} - 8 \, {\left (2 \, x^{2} + {\left (x - 3\right )} e^{x} - 11 \, x + 15\right )} {\left (-2 \, x^{3} + 11 \, x^{2} - {\left (x^{2} - 3 \, x\right )} e^{x} - 15 \, x\right )}^{x} + 32 \, x^{2} + 16 \, {\left (x - 3\right )} e^{x} - 176 \, x + 240}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.16, size = 228, normalized size = 9.91
method | result | size |
risch | \(\frac {1}{{\mathrm e}^{\frac {x \left (i \pi \mathrm {csgn}\left (i x \left (x^{2}+\left (\frac {{\mathrm e}^{x}}{2}-\frac {11}{2}\right ) x -\frac {3 \,{\mathrm e}^{x}}{2}+\frac {15}{2}\right )\right )^{3}+i \pi \mathrm {csgn}\left (i x \left (x^{2}+\left (\frac {{\mathrm e}^{x}}{2}-\frac {11}{2}\right ) x -\frac {3 \,{\mathrm e}^{x}}{2}+\frac {15}{2}\right )\right )^{2} \mathrm {csgn}\left (i x \right )+i \pi \mathrm {csgn}\left (i x \left (x^{2}+\left (\frac {{\mathrm e}^{x}}{2}-\frac {11}{2}\right ) x -\frac {3 \,{\mathrm e}^{x}}{2}+\frac {15}{2}\right )\right )^{2} \mathrm {csgn}\left (i \left (x^{2}+\left (\frac {{\mathrm e}^{x}}{2}-\frac {11}{2}\right ) x -\frac {3 \,{\mathrm e}^{x}}{2}+\frac {15}{2}\right )\right )-i \pi \,\mathrm {csgn}\left (i x \left (x^{2}+\left (\frac {{\mathrm e}^{x}}{2}-\frac {11}{2}\right ) x -\frac {3 \,{\mathrm e}^{x}}{2}+\frac {15}{2}\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x^{2}+\left (\frac {{\mathrm e}^{x}}{2}-\frac {11}{2}\right ) x -\frac {3 \,{\mathrm e}^{x}}{2}+\frac {15}{2}\right )\right )-2 i \mathrm {csgn}\left (i x \left (x^{2}+\left (\frac {{\mathrm e}^{x}}{2}-\frac {11}{2}\right ) x -\frac {3 \,{\mathrm e}^{x}}{2}+\frac {15}{2}\right )\right )^{2} \pi +2 i \pi +2 \ln \relax (x )+2 \ln \left (x^{2}+\left (\frac {{\mathrm e}^{x}}{2}-\frac {11}{2}\right ) x -\frac {3 \,{\mathrm e}^{x}}{2}+\frac {15}{2}\right )\right )}{2}}-4}\) | \(228\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 28, normalized size = 1.22 \begin {gather*} \frac {1}{e^{\left (x \log \left (x - 3\right ) + x \log \relax (x) + x \log \left (-2 \, x - e^{x} + 5\right )\right )} - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.95, size = 32, normalized size = 1.39 \begin {gather*} \frac {1}{{\left (3\,x\,{\mathrm {e}}^x-x^2\,{\mathrm {e}}^x-15\,x+11\,x^2-2\,x^3\right )}^x-4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________