Optimal. Leaf size=34 \[ \log \left (\frac {x}{\left (4-e^{2-\frac {3}{\log (x)}}-x\right ) \left (3-\frac {1}{5 \log ^2(x)}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 6.11, antiderivative size = 52, normalized size of antiderivative = 1.53, number of steps used = 8, number of rules used = 5, integrand size = 114, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.044, Rules used = {6741, 6742, 6684, 1802, 260} \begin {gather*} -\log \left (1-15 \log ^2(x)\right )+\log (x)-\log \left (x e^{\frac {3}{\log (x)}}-4 e^{\frac {3}{\log (x)}}+e^2\right )+2 \log (\log (x))+\frac {3}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 260
Rule 1802
Rule 6684
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {3}{\log (x)}} \left (-((8-2 x) \log (x))-4 \log ^2(x)+60 \log ^4(x)-e^{\frac {-3+2 \log (x)}{\log (x)}} \left (3-2 \log (x)-46 \log ^2(x)+15 \log ^4(x)\right )\right )}{x \left (e^2-4 e^{\frac {3}{\log (x)}}+e^{\frac {3}{\log (x)}} x\right ) \log ^2(x) \left (1-15 \log ^2(x)\right )} \, dx\\ &=\int \left (-\frac {e^{\frac {3}{\log (x)}} \left (12-3 x+x \log ^2(x)\right )}{x \left (e^2-4 e^{\frac {3}{\log (x)}}+e^{\frac {3}{\log (x)}} x\right ) \log ^2(x)}+\frac {3-2 \log (x)-46 \log ^2(x)+15 \log ^4(x)}{x \log ^2(x) \left (-1+15 \log ^2(x)\right )}\right ) \, dx\\ &=-\int \frac {e^{\frac {3}{\log (x)}} \left (12-3 x+x \log ^2(x)\right )}{x \left (e^2-4 e^{\frac {3}{\log (x)}}+e^{\frac {3}{\log (x)}} x\right ) \log ^2(x)} \, dx+\int \frac {3-2 \log (x)-46 \log ^2(x)+15 \log ^4(x)}{x \log ^2(x) \left (-1+15 \log ^2(x)\right )} \, dx\\ &=-\log \left (e^2-4 e^{\frac {3}{\log (x)}}+e^{\frac {3}{\log (x)}} x\right )+\operatorname {Subst}\left (\int \frac {3-2 x-46 x^2+15 x^4}{x^2 \left (-1+15 x^2\right )} \, dx,x,\log (x)\right )\\ &=-\log \left (e^2-4 e^{\frac {3}{\log (x)}}+e^{\frac {3}{\log (x)}} x\right )+\operatorname {Subst}\left (\int \left (1-\frac {3}{x^2}+\frac {2}{x}-\frac {30 x}{-1+15 x^2}\right ) \, dx,x,\log (x)\right )\\ &=\frac {3}{\log (x)}+\log (x)-\log \left (e^2-4 e^{\frac {3}{\log (x)}}+e^{\frac {3}{\log (x)}} x\right )+2 \log (\log (x))-30 \operatorname {Subst}\left (\int \frac {x}{-1+15 x^2} \, dx,x,\log (x)\right )\\ &=\frac {3}{\log (x)}+\log (x)-\log \left (e^2-4 e^{\frac {3}{\log (x)}}+e^{\frac {3}{\log (x)}} x\right )+2 \log (\log (x))-\log \left (1-15 \log ^2(x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 52, normalized size = 1.53 \begin {gather*} \frac {3}{\log (x)}+\log (x)-\log \left (e^2-4 e^{\frac {3}{\log (x)}}+e^{\frac {3}{\log (x)}} x\right )+2 \log (\log (x))-\log \left (1-15 \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 37, normalized size = 1.09 \begin {gather*} -\log \left (15 \, \log \relax (x)^{2} - 1\right ) - \log \left (x + e^{\left (\frac {2 \, \log \relax (x) - 3}{\log \relax (x)}\right )} - 4\right ) + \log \relax (x) + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 37, normalized size = 1.09 \begin {gather*} -\log \left (15 \, \log \relax (x)^{2} - 1\right ) - \log \left (x + e^{\left (\frac {2 \, \log \relax (x) - 3}{\log \relax (x)}\right )} - 4\right ) + \log \relax (x) + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 53, normalized size = 1.56
method | result | size |
risch | \(\ln \relax (x )+\frac {3}{\ln \relax (x )}+2 \ln \left (\ln \relax (x )\right )-\ln \left (\ln \relax (x )^{2}-\frac {1}{15}\right )+\frac {2 \ln \relax (x )-3}{\ln \relax (x )}-\ln \left (x +{\mathrm e}^{\frac {2 \ln \relax (x )-3}{\ln \relax (x )}}-4\right )\) | \(53\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 52, normalized size = 1.53 \begin {gather*} \frac {3}{\log \relax (x)} - \log \left (\log \relax (x)^{2} - \frac {1}{15}\right ) - \log \left (x - 4\right ) + \log \relax (x) - \log \left (\frac {{\left (x - 4\right )} e^{\frac {3}{\log \relax (x)}} + e^{2}}{x - 4}\right ) + 2 \, \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.56, size = 47, normalized size = 1.38 \begin {gather*} 2\,\ln \left (\frac {1}{x^2}\right )-\ln \left (x+{\mathrm {e}}^{-\frac {3}{\ln \relax (x)}}\,{\mathrm {e}}^2-4\right )+2\,\ln \left (\ln \relax (x)\right )-\ln \left (\frac {15\,{\ln \relax (x)}^2-1}{x}\right )+4\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 36, normalized size = 1.06 \begin {gather*} \log {\relax (x )} - \log {\left (\log {\relax (x )}^{2} - \frac {1}{15} \right )} - \log {\left (x + e^{\frac {2 \log {\relax (x )} - 3}{\log {\relax (x )}}} - 4 \right )} + 2 \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________