Optimal. Leaf size=26 \[ 1-x^{\left .\frac {1}{2}\right /x}-\frac {\log \left (\frac {x^2}{5}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 0.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4+x^{\left .\frac {1}{2}\right /x} (-1+\log (x))+2 \log \left (\frac {x^2}{5}\right )}{2 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {-4+x^{\left .\frac {1}{2}\right /x} (-1+\log (x))+2 \log \left (\frac {x^2}{5}\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (x^{-2+\frac {1}{2 x}} (-1+\log (x))+\frac {2 \left (-2+\log \left (\frac {x^2}{5}\right )\right )}{x^2}\right ) \, dx\\ &=\frac {1}{2} \int x^{-2+\frac {1}{2 x}} (-1+\log (x)) \, dx+\int \frac {-2+\log \left (\frac {x^2}{5}\right )}{x^2} \, dx\\ &=-\frac {\log \left (\frac {x^2}{5}\right )}{x}+\frac {1}{2} \int \left (-x^{-2+\frac {1}{2 x}}+x^{-2+\frac {1}{2 x}} \log (x)\right ) \, dx\\ &=-\frac {\log \left (\frac {x^2}{5}\right )}{x}-\frac {1}{2} \int x^{-2+\frac {1}{2 x}} \, dx+\frac {1}{2} \int x^{-2+\frac {1}{2 x}} \log (x) \, dx\\ &=-\frac {\log \left (\frac {x^2}{5}\right )}{x}-\frac {1}{2} \int x^{-2+\frac {1}{2 x}} \, dx-\frac {1}{2} \int \frac {\int x^{-2+\frac {1}{2 x}} \, dx}{x} \, dx+\frac {1}{2} \log (x) \int x^{-2+\frac {1}{2 x}} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 25, normalized size = 0.96 \begin {gather*} -\frac {x^{1+\frac {1}{2 x}}+\log \left (\frac {x^2}{5}\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.85, size = 23, normalized size = 0.88 \begin {gather*} -\frac {x x^{\frac {1}{2 \, x}} - \log \relax (5) + 2 \, \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 23, normalized size = 0.88 \begin {gather*} -x^{\frac {1}{2 \, x}} + \frac {\log \relax (5)}{x} - \frac {2 \, \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 27, normalized size = 1.04
method | result | size |
default | \(-{\mathrm e}^{\frac {\ln \relax (x )}{2 x}}-\frac {\ln \left (x^{2}\right )}{x}+\frac {\ln \relax (5)}{x}\) | \(27\) |
risch | \(-\frac {2 \ln \relax (x )}{x}+\frac {i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 \ln \relax (5)}{2 x}-x^{\frac {1}{2 x}}\) | \(77\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 30, normalized size = 1.15 \begin {gather*} -\frac {x x^{\frac {1}{2 \, x}} - \log \relax (5) + 2 \, \log \relax (x) + 2}{x} + \frac {2}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.38, size = 25, normalized size = 0.96 \begin {gather*} -{\mathrm {e}}^{\frac {\ln \relax (x)}{2\,x}}-\frac {\ln \left (x^2\right )-\ln \relax (5)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 19, normalized size = 0.73 \begin {gather*} - e^{\frac {\log {\relax (x )}}{2 x}} - \frac {2 \log {\relax (x )}}{x} + \frac {\log {\relax (5 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________