Optimal. Leaf size=20 \[ \log \left (\log \left (\frac {3 x}{(2+x-\log (3)) (5+\log (5))}\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.106, Rules used = {6, 12, 1593, 2516, 2504} \begin {gather*} \log \left (\log \left (\frac {3 x}{(5+\log (5)) (x+2-\log (3))}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1593
Rule 2504
Rule 2516
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2+\log (3)}{\left (-x^2+x (-2+\log (3))\right ) \log \left (-\frac {3 x}{-10-5 x+5 \log (3)+(-2-x+\log (3)) \log (5)}\right )} \, dx\\ &=(-2+\log (3)) \int \frac {1}{\left (-x^2+x (-2+\log (3))\right ) \log \left (-\frac {3 x}{-10-5 x+5 \log (3)+(-2-x+\log (3)) \log (5)}\right )} \, dx\\ &=(-2+\log (3)) \int \frac {1}{x (-2-x+\log (3)) \log \left (-\frac {3 x}{-10-5 x+5 \log (3)+(-2-x+\log (3)) \log (5)}\right )} \, dx\\ &=(-2+\log (3)) \int \frac {1}{x (-2-x+\log (3)) \log \left (-\frac {3 x}{x (-5-\log (5))-(2-\log (3)) (5+\log (5))}\right )} \, dx\\ &=\log \left (\log \left (\frac {3 x}{(2+x-\log (3)) (5+\log (5))}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 34, normalized size = 1.70 \begin {gather*} -\frac {(2-\log (3)) \log \left (\log \left (\frac {3 x}{(2+x-\log (3)) (5+\log (5))}\right )\right )}{-2+\log (3)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 26, normalized size = 1.30 \begin {gather*} \log \left (\log \left (\frac {3 \, x}{{\left (x - \log \relax (3) + 2\right )} \log \relax (5) + 5 \, x - 5 \, \log \relax (3) + 10}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 32, normalized size = 1.60 \begin {gather*} \log \left (\log \relax (3) - \log \left (x \log \relax (5) - \log \relax (5) \log \relax (3) + 5 \, x + 2 \, \log \relax (5) - 5 \, \log \relax (3) + 10\right ) + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.29, size = 27, normalized size = 1.35
method | result | size |
norman | \(\ln \left (\ln \left (-\frac {3 x}{\left (\ln \relax (3)-x -2\right ) \ln \relax (5)+5 \ln \relax (3)-5 x -10}\right )\right )\) | \(27\) |
risch | \(\ln \left (\ln \left (-\frac {3 x}{\left (\ln \relax (3)-x -2\right ) \ln \relax (5)+5 \ln \relax (3)-5 x -10}\right )\right )\) | \(27\) |
default | \(-\frac {3 \left (\ln \relax (3)-2\right )^{2} \left (-\frac {5 \ln \left (\ln \left (\frac {3}{5+\ln \relax (5)}+\frac {3 \ln \relax (3)-6}{\left (2+x -\ln \relax (3)\right ) \left (5+\ln \relax (5)\right )}\right )\right )}{3 \left (\ln \relax (3)^{2}-4 \ln \relax (3)+4\right )}-\frac {\ln \relax (5) \ln \left (\ln \left (\frac {3}{5+\ln \relax (5)}+\frac {3 \ln \relax (3)-6}{\left (2+x -\ln \relax (3)\right ) \left (5+\ln \relax (5)\right )}\right )\right )}{3 \left (\ln \relax (3)^{2}-4 \ln \relax (3)+4\right )}\right )}{5+\ln \relax (5)}\) | \(110\) |
derivativedivides | \(\frac {3 \left (2-\ln \relax (3)\right ) \left (\ln \relax (3)-2\right ) \left (-\frac {5 \ln \left (\ln \left (\frac {3}{5+\ln \relax (5)}+\frac {3 \ln \relax (3)-6}{\left (2+x -\ln \relax (3)\right ) \left (5+\ln \relax (5)\right )}\right )\right )}{3 \left (\ln \relax (3)^{2}-4 \ln \relax (3)+4\right )}-\frac {\ln \relax (5) \ln \left (\ln \left (\frac {3}{5+\ln \relax (5)}+\frac {3 \ln \relax (3)-6}{\left (2+x -\ln \relax (3)\right ) \left (5+\ln \relax (5)\right )}\right )\right )}{3 \left (\ln \relax (3)^{2}-4 \ln \relax (3)+4\right )}\right )}{5+\ln \relax (5)}\) | \(114\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 23, normalized size = 1.15 \begin {gather*} \log \left (-\log \relax (3) + \log \left (x - \log \relax (3) + 2\right ) - \log \relax (x) + \log \left (\log \relax (5) + 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.26, size = 26, normalized size = 1.30 \begin {gather*} \ln \left (\ln \left (\frac {3\,x}{5\,x-5\,\ln \relax (3)+\ln \relax (5)\,\left (x-\ln \relax (3)+2\right )+10}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.26, size = 27, normalized size = 1.35 \begin {gather*} \log {\left (\log {\left (- \frac {3 x}{- 5 x + \left (- x - 2 + \log {\relax (3 )}\right ) \log {\relax (5 )} - 10 + 5 \log {\relax (3 )}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________