Optimal. Leaf size=24 \[ e^{4 (2-2 x) \left (-1+\frac {1}{x^2 \left (e^{2 x}+x\right )}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 9.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {8-8 x-8 x^3+8 x^4+e^{2 x} \left (-8 x^2+8 x^3\right )}{e^{2 x} x^2+x^3}\right ) \left (-24 x+16 x^2+8 e^{4 x} x^3+8 x^5+e^{2 x} \left (-16-8 x+16 x^2+16 x^4\right )\right )}{e^{4 x} x^3+2 e^{2 x} x^4+x^5} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {8 \exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right ) \left (e^{4 x} x^3+x \left (-3+2 x+x^4\right )+e^{2 x} \left (-2-x+2 x^2+2 x^4\right )\right )}{x^3 \left (e^{2 x}+x\right )^2} \, dx\\ &=8 \int \frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right ) \left (e^{4 x} x^3+x \left (-3+2 x+x^4\right )+e^{2 x} \left (-2-x+2 x^2+2 x^4\right )\right )}{x^3 \left (e^{2 x}+x\right )^2} \, dx\\ &=8 \int \left (\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )-\frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right ) \left (1-3 x+2 x^2\right )}{x^2 \left (e^{2 x}+x\right )^2}+\frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right ) \left (-2-x+2 x^2\right )}{x^3 \left (e^{2 x}+x\right )}\right ) \, dx\\ &=8 \int \exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right ) \, dx-8 \int \frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right ) \left (1-3 x+2 x^2\right )}{x^2 \left (e^{2 x}+x\right )^2} \, dx+8 \int \frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right ) \left (-2-x+2 x^2\right )}{x^3 \left (e^{2 x}+x\right )} \, dx\\ &=8 \int \exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right ) \, dx-8 \int \left (\frac {2 \exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{\left (e^{2 x}+x\right )^2}+\frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x^2 \left (e^{2 x}+x\right )^2}-\frac {3 \exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x \left (e^{2 x}+x\right )^2}\right ) \, dx+8 \int \left (-\frac {2 \exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x^3 \left (e^{2 x}+x\right )}-\frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x^2 \left (e^{2 x}+x\right )}+\frac {2 \exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x \left (e^{2 x}+x\right )}\right ) \, dx\\ &=8 \int \exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right ) \, dx-8 \int \frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x^2 \left (e^{2 x}+x\right )^2} \, dx-8 \int \frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x^2 \left (e^{2 x}+x\right )} \, dx-16 \int \frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{\left (e^{2 x}+x\right )^2} \, dx-16 \int \frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x^3 \left (e^{2 x}+x\right )} \, dx+16 \int \frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x \left (e^{2 x}+x\right )} \, dx+24 \int \frac {\exp \left (\frac {8 (-1+x) \left (-1+e^{2 x} x^2+x^3\right )}{x^2 \left (e^{2 x}+x\right )}\right )}{x \left (e^{2 x}+x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 24, normalized size = 1.00 \begin {gather*} e^{-8+8 x-\frac {8 (-1+x)}{x^2 \left (e^{2 x}+x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 44, normalized size = 1.83 \begin {gather*} e^{\left (\frac {8 \, {\left (x^{4} - x^{3} + {\left (x^{3} - x^{2}\right )} e^{\left (2 \, x\right )} - x + 1\right )}}{x^{3} + x^{2} e^{\left (2 \, x\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 31, normalized size = 1.29
method | result | size |
risch | \({\mathrm e}^{\frac {8 \left (x -1\right ) \left ({\mathrm e}^{2 x} x^{2}+x^{3}-1\right )}{x^{2} \left ({\mathrm e}^{2 x}+x \right )}}\) | \(31\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.63, size = 63, normalized size = 2.62 \begin {gather*} e^{\left (8 \, x - \frac {8 \, e^{\left (-2 \, x\right )}}{x} - \frac {8 \, e^{\left (-4 \, x\right )}}{x} + \frac {8}{x e^{\left (4 \, x\right )} + e^{\left (6 \, x\right )}} + \frac {8}{x e^{\left (2 \, x\right )} + e^{\left (4 \, x\right )}} + \frac {8 \, e^{\left (-2 \, x\right )}}{x^{2}} - 8\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.53, size = 90, normalized size = 3.75 \begin {gather*} {\mathrm {e}}^{\frac {8\,x^2}{x+{\mathrm {e}}^{2\,x}}}\,{\mathrm {e}}^{-\frac {8}{x\,{\mathrm {e}}^{2\,x}+x^2}}\,{\mathrm {e}}^{-\frac {8\,{\mathrm {e}}^{2\,x}}{x+{\mathrm {e}}^{2\,x}}}\,{\mathrm {e}}^{-\frac {8\,x}{x+{\mathrm {e}}^{2\,x}}}\,{\mathrm {e}}^{\frac {8}{x^2\,{\mathrm {e}}^{2\,x}+x^3}}\,{\mathrm {e}}^{\frac {8\,x\,{\mathrm {e}}^{2\,x}}{x+{\mathrm {e}}^{2\,x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.52, size = 42, normalized size = 1.75 \begin {gather*} e^{\frac {8 x^{4} - 8 x^{3} - 8 x + \left (8 x^{3} - 8 x^{2}\right ) e^{2 x} + 8}{x^{3} + x^{2} e^{2 x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________