Optimal. Leaf size=31 \[ \log \left (\left (3-e^{\frac {2 e^e x}{-1+x}}\right )^2\right ) \left (2+\log \left (\frac {2+x}{5}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (-3+6 x-3 x^2+e^{\frac {2 e^e x}{-1+x}} \left (1-2 x+x^2\right )\right ) \log \left (9-6 e^{\frac {2 e^e x}{-1+x}}+e^{\frac {4 e^e x}{-1+x}}\right )+e^{\frac {2 e^e x}{-1+x}} \left (e^e (-16-8 x)+e^e (-8-4 x) \log \left (\frac {2+x}{5}\right )\right )}{-6+9 x-3 x^3+e^{\frac {2 e^e x}{-1+x}} \left (2-3 x+x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {\log \left (\left (-3+e^{\frac {2 e^e x}{-1+x}}\right )^2\right )}{2+x}-\frac {4 e^{e+\frac {2 e^e x}{-1+x}} \left (2+\log \left (\frac {2+x}{5}\right )\right )}{\left (-3+e^{\frac {2 e^e x}{-1+x}}\right ) (-1+x)^2}\right ) \, dx\\ &=-\left (4 \int \frac {e^{e+\frac {2 e^e x}{-1+x}} \left (2+\log \left (\frac {2+x}{5}\right )\right )}{\left (-3+e^{\frac {2 e^e x}{-1+x}}\right ) (-1+x)^2} \, dx\right )+\int \frac {\log \left (\left (-3+e^{\frac {2 e^e x}{-1+x}}\right )^2\right )}{2+x} \, dx\\ &=-\left (4 \int \left (\frac {2 e^{e+\frac {2 e^e x}{-1+x}}}{\left (-3+e^{\frac {2 e^e x}{-1+x}}\right ) (-1+x)^2}+\frac {e^{e+\frac {2 e^e x}{-1+x}} \log \left (\frac {2}{5}+\frac {x}{5}\right )}{\left (-3+e^{\frac {2 e^e x}{-1+x}}\right ) (1-x)^2}\right ) \, dx\right )+\int \frac {\log \left (\left (-3+e^{\frac {2 e^e x}{-1+x}}\right )^2\right )}{2+x} \, dx\\ &=-\left (4 \int \frac {e^{e+\frac {2 e^e x}{-1+x}} \log \left (\frac {2}{5}+\frac {x}{5}\right )}{\left (-3+e^{\frac {2 e^e x}{-1+x}}\right ) (1-x)^2} \, dx\right )-8 \int \frac {e^{e+\frac {2 e^e x}{-1+x}}}{\left (-3+e^{\frac {2 e^e x}{-1+x}}\right ) (-1+x)^2} \, dx+\int \frac {\log \left (\left (-3+e^{\frac {2 e^e x}{-1+x}}\right )^2\right )}{2+x} \, dx\\ &=4 \log \left (3-e^{-\frac {2 e^e x}{1-x}}\right )-4 \int \frac {e^{e+\frac {2 e^e x}{-1+x}} \log \left (\frac {2}{5}+\frac {x}{5}\right )}{\left (-3+e^{\frac {2 e^e x}{-1+x}}\right ) (1-x)^2} \, dx+\int \frac {\log \left (\left (-3+e^{\frac {2 e^e x}{-1+x}}\right )^2\right )}{2+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.98, size = 58, normalized size = 1.87 \begin {gather*} 4 \log \left (3-e^{2 e^e+\frac {2 e^e}{-1+x}}\right )+\log \left (\left (-3+e^{2 e^e+\frac {2 e^e}{-1+x}}\right )^2\right ) \log \left (\frac {2+x}{5}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 38, normalized size = 1.23 \begin {gather*} {\left (\log \left (\frac {1}{5} \, x + \frac {2}{5}\right ) + 2\right )} \log \left (e^{\left (\frac {4 \, x e^{e}}{x - 1}\right )} - 6 \, e^{\left (\frac {2 \, x e^{e}}{x - 1}\right )} + 9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 3.90, size = 178, normalized size = 5.74 \begin {gather*} \frac {x \log \left (x + 2\right ) \log \left (e^{\left (\frac {4 \, x e^{e}}{x - 1}\right )} - 6 \, e^{\left (\frac {2 \, x e^{e}}{x - 1}\right )} + 9\right ) - 2 \, x \log \relax (5) \log \left (e^{\left (\frac {2 \, x e^{e}}{x - 1}\right )} - 3\right ) + 4 \, e^{e} \log \relax (5) - 4 \, e^{e} \log \left (x + 2\right ) + 4 \, e^{e} \log \left (\frac {1}{5} \, x + \frac {2}{5}\right ) - \log \left (x + 2\right ) \log \left (e^{\left (\frac {4 \, x e^{e}}{x - 1}\right )} - 6 \, e^{\left (\frac {2 \, x e^{e}}{x - 1}\right )} + 9\right ) + 4 \, x \log \left (e^{\left (\frac {2 \, x e^{e}}{x - 1}\right )} - 3\right ) + 2 \, \log \relax (5) \log \left (e^{\left (\frac {2 \, x e^{e}}{x - 1}\right )} - 3\right ) - 4 \, \log \left (e^{\left (\frac {2 \, x e^{e}}{x - 1}\right )} - 3\right )}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.33, size = 179, normalized size = 5.77
method | result | size |
risch | \(2 \ln \left (\frac {2}{5}+\frac {x}{5}\right ) \ln \left ({\mathrm e}^{\frac {2 x \,{\mathrm e}^{{\mathrm e}}}{x -1}}-3\right )-\frac {i \pi \ln \left (-x -2\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{\frac {2 x \,{\mathrm e}^{{\mathrm e}}}{x -1}}-3\right )\right )^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{\frac {2 x \,{\mathrm e}^{{\mathrm e}}}{x -1}}-3\right )^{2}\right )}{2}+i \pi \ln \left (-x -2\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{\frac {2 x \,{\mathrm e}^{{\mathrm e}}}{x -1}}-3\right )\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{\frac {2 x \,{\mathrm e}^{{\mathrm e}}}{x -1}}-3\right )^{2}\right )^{2}-\frac {i \pi \ln \left (-x -2\right ) \mathrm {csgn}\left (i \left ({\mathrm e}^{\frac {2 x \,{\mathrm e}^{{\mathrm e}}}{x -1}}-3\right )^{2}\right )^{3}}{2}+4 \ln \left ({\mathrm e}^{\frac {2 x \,{\mathrm e}^{{\mathrm e}}}{x -1}}-3\right )-8 \,{\mathrm e}^{{\mathrm e}}\) | \(179\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 32, normalized size = 1.03 \begin {gather*} -2 \, {\left (\log \relax (5) - \log \left (x + 2\right ) - 2\right )} \log \left (e^{\left (\frac {2 \, e^{e}}{x - 1} + 2 \, e^{e}\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.69, size = 54, normalized size = 1.74 \begin {gather*} 4\,\ln \left ({\mathrm {e}}^{\frac {2\,x\,{\mathrm {e}}^{\mathrm {e}}}{x-1}}-3\right )+\ln \left (\frac {x}{5}+\frac {2}{5}\right )\,\ln \left ({\mathrm {e}}^{\frac {4\,x\,{\mathrm {e}}^{\mathrm {e}}}{x-1}}-6\,{\mathrm {e}}^{\frac {2\,x\,{\mathrm {e}}^{\mathrm {e}}}{x-1}}+9\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.04, size = 58, normalized size = 1.87 \begin {gather*} \log {\left (\frac {x}{5} + \frac {2}{5} \right )} \log {\left (e^{\frac {4 x e^{e}}{x - 1}} - 6 e^{\frac {2 x e^{e}}{x - 1}} + 9 \right )} + 4 \log {\left (e^{\frac {2 x e^{e}}{x - 1}} - 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________