Optimal. Leaf size=26 \[ 9-\frac {2}{x^2}+\log \left (4 e^{2 e} \left (e^{-5+2 x}-x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x-x^3+e^{-5+2 x} \left (4+2 x^3\right )}{e^{-5+2 x} x^3-x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {e^5 (-1+2 x)}{-e^{2 x}+e^5 x}+\frac {2 \left (2+x^3\right )}{x^3}\right ) \, dx\\ &=2 \int \frac {2+x^3}{x^3} \, dx-e^5 \int \frac {-1+2 x}{-e^{2 x}+e^5 x} \, dx\\ &=2 \int \left (1+\frac {2}{x^3}\right ) \, dx-e^5 \int \left (\frac {1}{e^{2 x}-e^5 x}+\frac {2 x}{-e^{2 x}+e^5 x}\right ) \, dx\\ &=-\frac {2}{x^2}+2 x-e^5 \int \frac {1}{e^{2 x}-e^5 x} \, dx-\left (2 e^5\right ) \int \frac {x}{-e^{2 x}+e^5 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.13, size = 19, normalized size = 0.73 \begin {gather*} -\frac {2}{x^2}+\log \left (e^{2 x}-e^5 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 21, normalized size = 0.81 \begin {gather*} \frac {x^{2} \log \left (-x + e^{\left (2 \, x - 5\right )}\right ) - 2}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 21, normalized size = 0.81 \begin {gather*} \frac {x^{2} \log \left (-x e^{5} + e^{\left (2 \, x\right )}\right ) - 2}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 18, normalized size = 0.69
method | result | size |
norman | \(-\frac {2}{x^{2}}+\ln \left (x -{\mathrm e}^{2 x -5}\right )\) | \(18\) |
risch | \(-\frac {2}{x^{2}}+5+\ln \left ({\mathrm e}^{2 x -5}-x \right )\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.38, size = 17, normalized size = 0.65 \begin {gather*} -\frac {2}{x^{2}} + \log \left (-x e^{5} + e^{\left (2 \, x\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.14, size = 17, normalized size = 0.65 \begin {gather*} \ln \left (x-{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-5}\right )-\frac {2}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.54 \begin {gather*} \log {\left (- x + e^{2 x - 5} \right )} - \frac {2}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________