Optimal. Leaf size=20 \[ \log \left (\log \left (1+e^x+x-\frac {8 \log (2) (-5+\log (x))}{\log (x)}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-40 \log (2)+\left (x+e^x x\right ) \log ^2(x)}{\left (40 x \log (2) \log (x)+\left (x+e^x x+x^2-8 x \log (2)\right ) \log ^2(x)\right ) \log \left (\frac {40 \log (2)+\left (1+e^x+x-8 \log (2)\right ) \log (x)}{\log (x)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-40 \log (2)+\left (x+e^x x\right ) \log ^2(x)}{x \log (x) \left (40 \log (2)+e^x \log (x)+x \log (x)+(1-8 \log (2)) \log (x)\right ) \log \left (\frac {40 \log (2)+\left (1+e^x+x-8 \log (2)\right ) \log (x)}{\log (x)}\right )} \, dx\\ &=\int \left (\frac {1}{\log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )}+\frac {-40 \log (2)-40 x \log (2) \log (x)-x^2 \log ^2(x)+8 x \log (2) \log ^2(x)}{x \log (x) \left (40 \log (2)+e^x \log (x)+x \log (x)+(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )}\right ) \, dx\\ &=\int \frac {1}{\log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx+\int \frac {-40 \log (2)-40 x \log (2) \log (x)-x^2 \log ^2(x)+8 x \log (2) \log ^2(x)}{x \log (x) \left (40 \log (2)+e^x \log (x)+x \log (x)+(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx\\ &=\int \left (\frac {40 \log (2)}{\left (-40 \log (2)-e^x \log (x)-x \log (x)-(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )}+\frac {40 \log (2)}{x \log (x) \left (-40 \log (2)-e^x \log (x)-x \log (x)-(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )}+\frac {x \log (x)}{\left (-40 \log (2)-e^x \log (x)-x \log (x)-(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )}+\frac {8 \log (2) \log (x)}{\left (40 \log (2)+e^x \log (x)+x \log (x)+(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )}\right ) \, dx+\int \frac {1}{\log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx\\ &=(8 \log (2)) \int \frac {\log (x)}{\left (40 \log (2)+e^x \log (x)+x \log (x)+(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx+(40 \log (2)) \int \frac {1}{\left (-40 \log (2)-e^x \log (x)-x \log (x)-(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx+(40 \log (2)) \int \frac {1}{x \log (x) \left (-40 \log (2)-e^x \log (x)-x \log (x)-(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx+\int \frac {1}{\log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx+\int \frac {x \log (x)}{\left (-40 \log (2)-e^x \log (x)-x \log (x)-(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx\\ &=(8 \log (2)) \int \frac {\log (x)}{\left (40 \log (2)+e^x \log (x)+x \log (x)+(1-8 \log (2)) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx+(40 \log (2)) \int \frac {1}{\left (-40 \log (2)-\left (1+e^x+x-8 \log (2)\right ) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx+(40 \log (2)) \int \frac {1}{x \log (x) \left (-40 \log (2)-\left (1+e^x+x-8 \log (2)\right ) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx+\int \frac {1}{\log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx+\int \frac {x \log (x)}{\left (-40 \log (2)-\left (1+e^x+x-8 \log (2)\right ) \log (x)\right ) \log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.59, size = 20, normalized size = 1.00 \begin {gather*} \log \left (\log \left (1+e^x+x-8 \log (2)+\frac {40 \log (2)}{\log (x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 24, normalized size = 1.20 \begin {gather*} \log \left (\log \left (\frac {{\left (x + e^{x} - 8 \, \log \relax (2) + 1\right )} \log \relax (x) + 40 \, \log \relax (2)}{\log \relax (x)}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 30, normalized size = 1.50 \begin {gather*} \log \left (-\log \left (x \log \relax (x) + e^{x} \log \relax (x) - 8 \, \log \relax (2) \log \relax (x) + 40 \, \log \relax (2) + \log \relax (x)\right ) + \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.19, size = 299, normalized size = 14.95
method | result | size |
risch | \(\ln \left (\ln \left (\left (\ln \relax (x )-5\right ) \ln \relax (2)-\frac {x \ln \relax (x )}{8}-\frac {{\mathrm e}^{x} \ln \relax (x )}{8}-\frac {\ln \relax (x )}{8}\right )+\frac {i \left (-2 \pi \mathrm {csgn}\left (\frac {i \left (-\left (\ln \relax (x )-5\right ) \ln \relax (2)+\frac {x \ln \relax (x )}{8}+\frac {{\mathrm e}^{x} \ln \relax (x )}{8}+\frac {\ln \relax (x )}{8}\right )}{\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (-\left (\ln \relax (x )-5\right ) \ln \relax (2)+\frac {x \ln \relax (x )}{8}+\frac {{\mathrm e}^{x} \ln \relax (x )}{8}+\frac {\ln \relax (x )}{8}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\left (\ln \relax (x )-5\right ) \ln \relax (2)+\frac {x \ln \relax (x )}{8}+\frac {{\mathrm e}^{x} \ln \relax (x )}{8}+\frac {\ln \relax (x )}{8}\right )}{\ln \relax (x )}\right )^{2}-\pi \,\mathrm {csgn}\left (i \left (-\left (\ln \relax (x )-5\right ) \ln \relax (2)+\frac {x \ln \relax (x )}{8}+\frac {{\mathrm e}^{x} \ln \relax (x )}{8}+\frac {\ln \relax (x )}{8}\right )\right ) \mathrm {csgn}\left (\frac {i \left (-\left (\ln \relax (x )-5\right ) \ln \relax (2)+\frac {x \ln \relax (x )}{8}+\frac {{\mathrm e}^{x} \ln \relax (x )}{8}+\frac {\ln \relax (x )}{8}\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-\pi \mathrm {csgn}\left (\frac {i \left (-\left (\ln \relax (x )-5\right ) \ln \relax (2)+\frac {x \ln \relax (x )}{8}+\frac {{\mathrm e}^{x} \ln \relax (x )}{8}+\frac {\ln \relax (x )}{8}\right )}{\ln \relax (x )}\right )^{3}+\pi \mathrm {csgn}\left (\frac {i \left (-\left (\ln \relax (x )-5\right ) \ln \relax (2)+\frac {x \ln \relax (x )}{8}+\frac {{\mathrm e}^{x} \ln \relax (x )}{8}+\frac {\ln \relax (x )}{8}\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-6 i \ln \relax (2)+2 i \ln \left (\ln \relax (x )\right )+2 \pi \right )}{2}\right )\) | \(299\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 25, normalized size = 1.25 \begin {gather*} \log \left (\log \left ({\left (x + e^{x} - 8 \, \log \relax (2) + 1\right )} \log \relax (x) + 40 \, \log \relax (2)\right ) - \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.97, size = 24, normalized size = 1.20 \begin {gather*} \ln \left (\ln \left (\frac {40\,\ln \relax (2)+\ln \relax (x)\,\left (x-8\,\ln \relax (2)+{\mathrm {e}}^x+1\right )}{\ln \relax (x)}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 5.32, size = 26, normalized size = 1.30 \begin {gather*} \log {\left (\log {\left (\frac {\left (x + e^{x} - 8 \log {\relax (2 )} + 1\right ) \log {\relax (x )} + 40 \log {\relax (2 )}}{\log {\relax (x )}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________