Optimal. Leaf size=27 \[ \left (1-\frac {x^2}{4}\right ) \left (x-\frac {-x^3+\log (4 x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 36, normalized size of antiderivative = 1.33, number of steps used = 7, number of rules used = 3, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.077, Rules used = {12, 14, 2334} \begin {gather*} -\frac {x^4}{4}-\frac {x^3}{4}+x^2+x-\frac {1}{4} \left (\frac {4}{x}-x\right ) \log (4 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2334
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {-4+5 x^2+8 x^3-3 x^4-4 x^5+\left (4+x^2\right ) \log (4 x)}{x^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {-4+5 x^2+8 x^3-3 x^4-4 x^5}{x^2}+\frac {\left (4+x^2\right ) \log (4 x)}{x^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {-4+5 x^2+8 x^3-3 x^4-4 x^5}{x^2} \, dx+\frac {1}{4} \int \frac {\left (4+x^2\right ) \log (4 x)}{x^2} \, dx\\ &=-\frac {1}{4} \left (\frac {4}{x}-x\right ) \log (4 x)-\frac {1}{4} \int \left (1-\frac {4}{x^2}\right ) \, dx+\frac {1}{4} \int \left (5-\frac {4}{x^2}+8 x-3 x^2-4 x^3\right ) \, dx\\ &=x+x^2-\frac {x^3}{4}-\frac {x^4}{4}-\frac {1}{4} \left (\frac {4}{x}-x\right ) \log (4 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 37, normalized size = 1.37 \begin {gather*} x+x^2-\frac {x^3}{4}-\frac {x^4}{4}-\frac {\log (4 x)}{x}+\frac {1}{4} x \log (4 x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 33, normalized size = 1.22 \begin {gather*} -\frac {x^{5} + x^{4} - 4 \, x^{3} - 4 \, x^{2} - {\left (x^{2} - 4\right )} \log \left (4 \, x\right )}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 28, normalized size = 1.04 \begin {gather*} -\frac {1}{4} \, x^{4} - \frac {1}{4} \, x^{3} + x^{2} + \frac {1}{4} \, {\left (x - \frac {4}{x}\right )} \log \left (4 \, x\right ) + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 30, normalized size = 1.11
method | result | size |
risch | \(\frac {\left (x^{2}-4\right ) \ln \left (4 x \right )}{4 x}-\frac {x^{4}}{4}-\frac {x^{3}}{4}+x^{2}+x\) | \(30\) |
derivativedivides | \(-\frac {x^{4}}{4}-\frac {x^{3}}{4}+\frac {x \ln \left (4 x \right )}{4}+x +x^{2}-\frac {\ln \left (4 x \right )}{x}\) | \(32\) |
default | \(-\frac {x^{4}}{4}-\frac {x^{3}}{4}+\frac {x \ln \left (4 x \right )}{4}+x +x^{2}-\frac {\ln \left (4 x \right )}{x}\) | \(32\) |
norman | \(\frac {x^{2}+x^{3}-\frac {x^{4}}{4}-\frac {x^{5}}{4}+\frac {x^{2} \ln \left (4 x \right )}{4}-\ln \left (4 x \right )}{x}\) | \(37\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 31, normalized size = 1.15 \begin {gather*} -\frac {1}{4} \, x^{4} - \frac {1}{4} \, x^{3} + x^{2} + \frac {1}{4} \, x \log \left (4 \, x\right ) + x - \frac {\log \left (4 \, x\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.44, size = 23, normalized size = 0.85 \begin {gather*} -\frac {\left (x^2-4\right )\,\left (x^2-\ln \left (4\,x\right )+x^3\right )}{4\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 27, normalized size = 1.00 \begin {gather*} - \frac {x^{4}}{4} - \frac {x^{3}}{4} + x^{2} + x + \frac {\left (x^{2} - 4\right ) \log {\left (4 x \right )}}{4 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________