Optimal. Leaf size=23 \[ \frac {1}{9} e^{3^{e^{-x} x}+x} x^2 (1+x) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 40, normalized size of antiderivative = 1.74, number of steps used = 2, number of rules used = 2, integrand size = 53, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {12, 2288} \begin {gather*} \frac {e^{3^{e^{-x} x}} \left (x^2-x^4\right )}{9 \left (e^{-x}-e^{-x} x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int e^{3^{e^{-x} x}} \left (e^x \left (2 x+4 x^2+x^3\right )+3^{e^{-x} x} \left (x^2-x^4\right ) \log (3)\right ) \, dx\\ &=\frac {e^{3^{e^{-x} x}} \left (x^2-x^4\right )}{9 \left (e^{-x}-e^{-x} x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 23, normalized size = 1.00 \begin {gather*} \frac {1}{9} e^{3^{e^{-x} x}+x} x^2 (1+x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.50, size = 20, normalized size = 0.87 \begin {gather*} \frac {1}{9} \, {\left (x^{3} + x^{2}\right )} e^{\left (3^{x e^{\left (-x\right )}} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {1}{9} \, {\left ({\left (x^{4} - x^{2}\right )} 3^{x e^{\left (-x\right )}} \log \relax (3) - {\left (x^{3} + 4 \, x^{2} + 2 \, x\right )} e^{x}\right )} e^{\left (3^{x e^{\left (-x\right )}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 20, normalized size = 0.87
method | result | size |
risch | \(\frac {\left (x +1\right ) x^{2} {\mathrm e}^{x +3^{x \,{\mathrm e}^{-x}}}}{9}\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 20, normalized size = 0.87 \begin {gather*} \frac {1}{9} \, {\left (x^{3} + x^{2}\right )} e^{\left (3^{x e^{\left (-x\right )}} + x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.59, size = 19, normalized size = 0.83 \begin {gather*} \frac {x^2\,{\mathrm {e}}^{3^{x\,{\mathrm {e}}^{-x}}}\,{\mathrm {e}}^x\,\left (x+1\right )}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 22, normalized size = 0.96 \begin {gather*} \frac {\left (x^{3} + x^{2}\right ) e^{x} e^{e^{x e^{- x} \log {\relax (3 )}}}}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________