Optimal. Leaf size=30 \[ \frac {1+e^{e^{12}}-x}{-\frac {2}{e^4}+3 x+\log (-3+x)-\log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 4.22, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{8+e^{12}} \left (-3+9 x-3 x^2\right )+e^8 \left (-3+12 x-3 x^2\right )+e^4 \left (-6 x+2 x^2\right )+e^8 \left (3 x-x^2\right ) \log (-3+x)+e^8 \left (-3 x+x^2\right ) \log (x)}{-12 x+4 x^2+e^4 \left (36 x^2-12 x^3\right )+e^8 \left (-27 x^3+9 x^4\right )+\left (e^4 \left (12 x-4 x^2\right )+e^8 \left (-18 x^2+6 x^3\right )\right ) \log (-3+x)+e^8 \left (-3 x+x^2\right ) \log ^2(-3+x)+\left (e^4 \left (-12 x+4 x^2\right )+e^8 \left (18 x^2-6 x^3\right )+e^8 \left (6 x-2 x^2\right ) \log (-3+x)\right ) \log (x)+e^8 \left (-3 x+x^2\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^4 \left (3 e^4 \left (1+e^{e^{12}}\right )+6 \left (1-\frac {1}{2} e^4 \left (4+3 e^{e^{12}}\right )\right ) x-2 \left (1-\frac {3}{2} e^4 \left (1+e^{e^{12}}\right )\right ) x^2+e^4 (-3+x) x \log (-3+x)-e^4 (-3+x) x \log (x)\right )}{(3-x) x \left (2-3 e^4 x-e^4 \log (-3+x)+e^4 \log (x)\right )^2} \, dx\\ &=e^4 \int \frac {3 e^4 \left (1+e^{e^{12}}\right )+6 \left (1-\frac {1}{2} e^4 \left (4+3 e^{e^{12}}\right )\right ) x-2 \left (1-\frac {3}{2} e^4 \left (1+e^{e^{12}}\right )\right ) x^2+e^4 (-3+x) x \log (-3+x)-e^4 (-3+x) x \log (x)}{(3-x) x \left (2-3 e^4 x-e^4 \log (-3+x)+e^4 \log (x)\right )^2} \, dx\\ &=e^4 \int \left (\frac {3 e^4 \left (-1-e^{e^{12}}+x\right ) \left (1-3 x+x^2\right )}{(-3+x) x \left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2}+\frac {1}{2-3 e^4 x-e^4 \log (-3+x)+e^4 \log (x)}\right ) \, dx\\ &=e^4 \int \frac {1}{2-3 e^4 x-e^4 \log (-3+x)+e^4 \log (x)} \, dx+\left (3 e^8\right ) \int \frac {\left (-1-e^{e^{12}}+x\right ) \left (1-3 x+x^2\right )}{(-3+x) x \left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2} \, dx\\ &=e^4 \int \frac {1}{2-3 e^4 x-e^4 \log (-3+x)+e^4 \log (x)} \, dx+\left (3 e^8\right ) \int \left (-\frac {1+e^{e^{12}}}{\left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2}-\frac {-2+e^{e^{12}}}{3 (-3+x) \left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2}+\frac {1+e^{e^{12}}}{3 x \left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2}+\frac {x}{\left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2}\right ) \, dx\\ &=e^4 \int \frac {1}{2-3 e^4 x-e^4 \log (-3+x)+e^4 \log (x)} \, dx+\left (3 e^8\right ) \int \frac {x}{\left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2} \, dx+\left (e^8 \left (2-e^{e^{12}}\right )\right ) \int \frac {1}{(-3+x) \left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2} \, dx+\left (e^8 \left (1+e^{e^{12}}\right )\right ) \int \frac {1}{x \left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2} \, dx-\left (3 e^8 \left (1+e^{e^{12}}\right )\right ) \int \frac {1}{\left (-2+3 e^4 x+e^4 \log (-3+x)-e^4 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 40, normalized size = 1.33 \begin {gather*} -\frac {e^4 \left (1+e^{e^{12}}-x\right )}{2-3 e^4 x-e^4 \log (-3+x)+e^4 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 41, normalized size = 1.37 \begin {gather*} -\frac {{\left (x - 1\right )} e^{8} - e^{\left (e^{12} + 8\right )}}{3 \, x e^{8} + e^{8} \log \left (x - 3\right ) - e^{8} \log \relax (x) - 2 \, e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.25, size = 43, normalized size = 1.43 \begin {gather*} -\frac {x e^{8} - e^{8} - e^{\left (e^{12} + 8\right )}}{3 \, x e^{8} + e^{8} \log \left (x - 3\right ) - e^{8} \log \relax (x) - 2 \, e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 34, normalized size = 1.13
method | result | size |
risch | \(\frac {\left ({\mathrm e}^{{\mathrm e}^{12}}-x +1\right ) {\mathrm e}^{4}}{3 x \,{\mathrm e}^{4}-{\mathrm e}^{4} \ln \relax (x )+{\mathrm e}^{4} \ln \left (x -3\right )-2}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 38, normalized size = 1.27 \begin {gather*} -\frac {x e^{4} - {\left (e^{\left (e^{12}\right )} + 1\right )} e^{4}}{3 \, x e^{4} + e^{4} \log \left (x - 3\right ) - e^{4} \log \relax (x) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.00, size = 55, normalized size = 1.83 \begin {gather*} \frac {{\mathrm {e}}^{-4}\,\left (3\,{\mathrm {e}}^{{\mathrm {e}}^{12}+8}-2\,{\mathrm {e}}^4+3\,{\mathrm {e}}^8+\ln \left (x-3\right )\,{\mathrm {e}}^8-{\mathrm {e}}^8\,\ln \relax (x)\right )}{3\,\left (\ln \left (x-3\right )\,{\mathrm {e}}^4+3\,x\,{\mathrm {e}}^4-{\mathrm {e}}^4\,\ln \relax (x)-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 39, normalized size = 1.30 \begin {gather*} \frac {- x e^{4} + e^{4} + e^{4} e^{e^{12}}}{3 x e^{4} - e^{4} \log {\relax (x )} + e^{4} \log {\left (x - 3 \right )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________