Optimal. Leaf size=25 \[ 4 \left (e^{\frac {e^4}{8}}+\frac {\log (x)}{e^2}+4 x^2 \log (x)\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 15, normalized size of antiderivative = 0.60, number of steps used = 6, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 14, 2304} \begin {gather*} 16 x^2 \log (x)+\frac {4 \log (x)}{e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2304
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {4+16 e^2 x^2+32 e^2 x^2 \log (x)}{x} \, dx}{e^2}\\ &=\frac {\int \left (\frac {4 \left (1+4 e^2 x^2\right )}{x}+32 e^2 x \log (x)\right ) \, dx}{e^2}\\ &=32 \int x \log (x) \, dx+\frac {4 \int \frac {1+4 e^2 x^2}{x} \, dx}{e^2}\\ &=-8 x^2+16 x^2 \log (x)+\frac {4 \int \left (\frac {1}{x}+4 e^2 x\right ) \, dx}{e^2}\\ &=\frac {4 \log (x)}{e^2}+16 x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 15, normalized size = 0.60 \begin {gather*} \frac {4 \log (x)}{e^2}+16 x^2 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 15, normalized size = 0.60 \begin {gather*} 4 \, {\left (4 \, x^{2} e^{2} + 1\right )} e^{\left (-2\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 16, normalized size = 0.64 \begin {gather*} 4 \, {\left (4 \, x^{2} e^{2} \log \relax (x) + \log \relax (x)\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 0.60
method | result | size |
risch | \(4 \ln \relax (x ) {\mathrm e}^{-2}+16 x^{2} \ln \relax (x )\) | \(15\) |
norman | \(4 \ln \relax (x ) {\mathrm e}^{-2}+16 x^{2} \ln \relax (x )\) | \(17\) |
default | \(4 \,{\mathrm e}^{-2} \left (8 \,{\mathrm e}^{2} \left (\frac {x^{2} \ln \relax (x )}{2}-\frac {x^{2}}{4}\right )+2 x^{2} {\mathrm e}^{2}+\ln \relax (x )\right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 31, normalized size = 1.24 \begin {gather*} 4 \, {\left (2 \, x^{2} e^{2} + 2 \, {\left (2 \, x^{2} \log \relax (x) - x^{2}\right )} e^{2} + \log \relax (x)\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.41, size = 12, normalized size = 0.48 \begin {gather*} 4\,\ln \relax (x)\,\left (4\,x^2+{\mathrm {e}}^{-2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 15, normalized size = 0.60 \begin {gather*} 16 x^{2} \log {\relax (x )} + \frac {4 \log {\relax (x )}}{e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________