Optimal. Leaf size=23 \[ \frac {2}{5-e^x-x+\frac {25}{x^2 \log ^2(x)}} \]
________________________________________________________________________________________
Rubi [F] time = 14.51, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {100 x \log (x)+100 x \log ^2(x)+\left (2 x^4+2 e^x x^4\right ) \log ^4(x)}{625+\left (250 x^2-50 e^x x^2-50 x^3\right ) \log ^2(x)+\left (25 x^4+e^{2 x} x^4-10 x^5+x^6+e^x \left (-10 x^4+2 x^5\right )\right ) \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \log (x) \left (50+50 \log (x)+\left (1+e^x\right ) x^3 \log ^3(x)\right )}{\left (25-x^2 \left (-5+e^x+x\right ) \log ^2(x)\right )^2} \, dx\\ &=2 \int \frac {x \log (x) \left (50+50 \log (x)+\left (1+e^x\right ) x^3 \log ^3(x)\right )}{\left (25-x^2 \left (-5+e^x+x\right ) \log ^2(x)\right )^2} \, dx\\ &=2 \int \left (\frac {x^2 \log ^2(x)}{-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)}-\frac {x \log (x) \left (-50-50 \log (x)-25 x \log (x)-6 x^3 \log ^3(x)+x^4 \log ^3(x)\right )}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2}\right ) \, dx\\ &=2 \int \frac {x^2 \log ^2(x)}{-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)} \, dx-2 \int \frac {x \log (x) \left (-50-50 \log (x)-25 x \log (x)-6 x^3 \log ^3(x)+x^4 \log ^3(x)\right )}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2} \, dx\\ &=2 \int \frac {x^2 \log ^2(x)}{-25+x^2 \left (-5+e^x+x\right ) \log ^2(x)} \, dx-2 \int \frac {x \log (x) \left (-50-25 (2+x) \log (x)+(-6+x) x^3 \log ^3(x)\right )}{\left (25-x^2 \left (-5+e^x+x\right ) \log ^2(x)\right )^2} \, dx\\ &=2 \int \frac {x^2 \log ^2(x)}{-25+x^2 \left (-5+e^x+x\right ) \log ^2(x)} \, dx-2 \int \left (-\frac {50 x \log (x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2}-\frac {50 x \log ^2(x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2}-\frac {25 x^2 \log ^2(x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2}-\frac {6 x^4 \log ^4(x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2}+\frac {x^5 \log ^4(x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2}\right ) \, dx\\ &=-\left (2 \int \frac {x^5 \log ^4(x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2} \, dx\right )+2 \int \frac {x^2 \log ^2(x)}{-25+x^2 \left (-5+e^x+x\right ) \log ^2(x)} \, dx+12 \int \frac {x^4 \log ^4(x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2} \, dx+50 \int \frac {x^2 \log ^2(x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2} \, dx+100 \int \frac {x \log (x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2} \, dx+100 \int \frac {x \log ^2(x)}{\left (-25-5 x^2 \log ^2(x)+e^x x^2 \log ^2(x)+x^3 \log ^2(x)\right )^2} \, dx\\ &=-\left (2 \int \frac {x^5 \log ^4(x)}{\left (25-x^2 \left (-5+e^x+x\right ) \log ^2(x)\right )^2} \, dx\right )+2 \int \frac {x^2 \log ^2(x)}{-25+x^2 \left (-5+e^x+x\right ) \log ^2(x)} \, dx+12 \int \frac {x^4 \log ^4(x)}{\left (25-x^2 \left (-5+e^x+x\right ) \log ^2(x)\right )^2} \, dx+50 \int \frac {x^2 \log ^2(x)}{\left (25-x^2 \left (-5+e^x+x\right ) \log ^2(x)\right )^2} \, dx+100 \int \frac {x \log (x)}{\left (25-x^2 \left (-5+e^x+x\right ) \log ^2(x)\right )^2} \, dx+100 \int \frac {x \log ^2(x)}{\left (25-x^2 \left (-5+e^x+x\right ) \log ^2(x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 27, normalized size = 1.17 \begin {gather*} -\frac {2 x^2 \log ^2(x)}{-25+x^2 \left (-5+e^x+x\right ) \log ^2(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 33, normalized size = 1.43 \begin {gather*} -\frac {2 \, x^{2} \log \relax (x)^{2}}{{\left (x^{3} + x^{2} e^{x} - 5 \, x^{2}\right )} \log \relax (x)^{2} - 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 51, normalized size = 2.22
method | result | size |
risch | \(-\frac {2}{{\mathrm e}^{x}+x -5}-\frac {50}{\left ({\mathrm e}^{x}+x -5\right ) \left (x^{2} {\mathrm e}^{x} \ln \relax (x )^{2}+x^{3} \ln \relax (x )^{2}-5 x^{2} \ln \relax (x )^{2}-25\right )}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.55, size = 37, normalized size = 1.61 \begin {gather*} -\frac {2 \, x^{2} \log \relax (x)^{2}}{x^{2} e^{x} \log \relax (x)^{2} + {\left (x^{3} - 5 \, x^{2}\right )} \log \relax (x)^{2} - 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\left (2\,x^4\,{\mathrm {e}}^x+2\,x^4\right )\,{\ln \relax (x)}^4+100\,x\,{\ln \relax (x)}^2+100\,x\,\ln \relax (x)}{\left (x^4\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^x\,\left (10\,x^4-2\,x^5\right )+25\,x^4-10\,x^5+x^6\right )\,{\ln \relax (x)}^4+\left (250\,x^2-50\,x^2\,{\mathrm {e}}^x-50\,x^3\right )\,{\ln \relax (x)}^2+625} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.36, size = 42, normalized size = 1.83 \begin {gather*} - \frac {2 x^{2} \log {\relax (x )}^{2}}{x^{3} \log {\relax (x )}^{2} + x^{2} e^{x} \log {\relax (x )}^{2} - 5 x^{2} \log {\relax (x )}^{2} - 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________