Optimal. Leaf size=30 \[ e^{\frac {x}{3-e-e^4}-(\log (3)-\log (-5+x))^2} \]
________________________________________________________________________________________
Rubi [B] time = 1.74, antiderivative size = 109, normalized size of antiderivative = 3.63, number of steps used = 5, number of rules used = 5, integrand size = 117, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {6, 2274, 1586, 12, 2288} \begin {gather*} -\frac {(x-5)^{\log (9)-1} \left (-x+2 \left (3-e-e^4\right ) \log (x-5)+5\right ) \exp \left (\frac {x-\left (\left (3-e-e^4\right ) \log ^2(x-5)\right )-\left (3-e-e^4\right ) \log ^2(3)}{3-e-e^4}\right )}{\frac {2 \left (3-e-e^4\right ) \log (x-5)}{5-x}+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1586
Rule 2274
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {-x+\left (3-e-e^4\right ) \log ^2(3)+\left (-6+2 e+2 e^4\right ) \log (3) \log (-5+x)+\left (3-e-e^4\right ) \log ^2(-5+x)}{-3+e+e^4}\right ) \left (5-x+\left (-6+2 e+2 e^4\right ) \log (3)+\left (6-2 e-2 e^4\right ) \log (-5+x)\right )}{15+\left (e+e^4\right ) (-5+x)-3 x} \, dx\\ &=\int \frac {\exp \left (\frac {-x+\left (3-e-e^4\right ) \log ^2(3)+\left (3-e-e^4\right ) \log ^2(-5+x)}{-3+e+e^4}\right ) (-5+x)^{\frac {\left (-6+2 e+2 e^4\right ) \log (3)}{-3+e+e^4}} \left (5-x+\left (-6+2 e+2 e^4\right ) \log (3)+\left (6-2 e-2 e^4\right ) \log (-5+x)\right )}{15+\left (e+e^4\right ) (-5+x)-3 x} \, dx\\ &=\int \frac {\exp \left (\frac {-x+\left (3-e-e^4\right ) \log ^2(3)+\left (3-e-e^4\right ) \log ^2(-5+x)}{-3+e+e^4}\right ) (-5+x)^{-1+\frac {\left (-6+2 e+2 e^4\right ) \log (3)}{-3+e+e^4}} \left (5-x+\left (-6+2 e+2 e^4\right ) \log (3)+\left (6-2 e-2 e^4\right ) \log (-5+x)\right )}{-3+e+e^4} \, dx\\ &=\frac {\int \exp \left (\frac {-x+\left (3-e-e^4\right ) \log ^2(3)+\left (3-e-e^4\right ) \log ^2(-5+x)}{-3+e+e^4}\right ) (-5+x)^{-1+\frac {\left (-6+2 e+2 e^4\right ) \log (3)}{-3+e+e^4}} \left (5-x+\left (-6+2 e+2 e^4\right ) \log (3)+\left (6-2 e-2 e^4\right ) \log (-5+x)\right ) \, dx}{-3+e+e^4}\\ &=-\frac {\exp \left (\frac {x-\left (3-e-e^4\right ) \log ^2(3)-\left (3-e-e^4\right ) \log ^2(-5+x)}{3-e-e^4}\right ) (-5+x)^{-1+\log (9)} \left (5-x+2 \left (3-e-e^4\right ) \log (-5+x)\right )}{1+\frac {2 \left (3-e-e^4\right ) \log (-5+x)}{5-x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 2.28, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {-x+\left (3-e-e^4\right ) \log ^2(3)+\left (-6+2 e+2 e^4\right ) \log (3) \log (-5+x)+\left (3-e-e^4\right ) \log ^2(-5+x)}{-3+e+e^4}} \left (5-x+\left (-6+2 e+2 e^4\right ) \log (3)+\left (6-2 e-2 e^4\right ) \log (-5+x)\right )}{15+e (-5+x)+e^4 (-5+x)-3 x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 51, normalized size = 1.70 \begin {gather*} e^{\left (-\frac {{\left (e^{4} + e - 3\right )} \log \relax (3)^{2} - 2 \, {\left (e^{4} + e - 3\right )} \log \relax (3) \log \left (x - 5\right ) + {\left (e^{4} + e - 3\right )} \log \left (x - 5\right )^{2} + x}{e^{4} + e - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.02, size = 163, normalized size = 5.43 \begin {gather*} e^{\left (-\frac {e^{4} \log \relax (3)^{2}}{e^{4} + e - 3} - \frac {e \log \relax (3)^{2}}{e^{4} + e - 3} + \frac {2 \, e^{4} \log \relax (3) \log \left (x - 5\right )}{e^{4} + e - 3} + \frac {2 \, e \log \relax (3) \log \left (x - 5\right )}{e^{4} + e - 3} - \frac {e^{4} \log \left (x - 5\right )^{2}}{e^{4} + e - 3} - \frac {e \log \left (x - 5\right )^{2}}{e^{4} + e - 3} + \frac {3 \, \log \relax (3)^{2}}{e^{4} + e - 3} - \frac {6 \, \log \relax (3) \log \left (x - 5\right )}{e^{4} + e - 3} + \frac {3 \, \log \left (x - 5\right )^{2}}{e^{4} + e - 3} - \frac {x}{e^{4} + e - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.37, size = 64, normalized size = 2.13
method | result | size |
norman | \({\mathrm e}^{\frac {\left (-{\mathrm e}^{4}+3-{\mathrm e}\right ) \ln \left (x -5\right )^{2}+\left (2 \,{\mathrm e}^{4}+2 \,{\mathrm e}-6\right ) \ln \relax (3) \ln \left (x -5\right )+\left (-{\mathrm e}^{4}+3-{\mathrm e}\right ) \ln \relax (3)^{2}-x}{{\mathrm e}^{4}+{\mathrm e}-3}}\) | \(64\) |
risch | \({\mathrm e}^{-\frac {{\mathrm e} \ln \relax (3)^{2}+{\mathrm e}^{4} \ln \relax (3)^{2}-2 \ln \relax (3) \ln \left (x -5\right ) {\mathrm e}-2 \ln \relax (3) \ln \left (x -5\right ) {\mathrm e}^{4}+\ln \left (x -5\right )^{2} {\mathrm e}+\ln \left (x -5\right )^{2} {\mathrm e}^{4}-3 \ln \relax (3)^{2}+6 \ln \relax (3) \ln \left (x -5\right )-3 \ln \left (x -5\right )^{2}+x}{{\mathrm e}^{4}+{\mathrm e}-3}}\) | \(88\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.70, size = 163, normalized size = 5.43 \begin {gather*} e^{\left (-\frac {e^{4} \log \relax (3)^{2}}{e^{4} + e - 3} - \frac {e \log \relax (3)^{2}}{e^{4} + e - 3} + \frac {2 \, e^{4} \log \relax (3) \log \left (x - 5\right )}{e^{4} + e - 3} + \frac {2 \, e \log \relax (3) \log \left (x - 5\right )}{e^{4} + e - 3} - \frac {e^{4} \log \left (x - 5\right )^{2}}{e^{4} + e - 3} - \frac {e \log \left (x - 5\right )^{2}}{e^{4} + e - 3} + \frac {3 \, \log \relax (3)^{2}}{e^{4} + e - 3} - \frac {6 \, \log \relax (3) \log \left (x - 5\right )}{e^{4} + e - 3} + \frac {3 \, \log \left (x - 5\right )^{2}}{e^{4} + e - 3} - \frac {x}{e^{4} + e - 3}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.95, size = 125, normalized size = 4.17 \begin {gather*} {\mathrm {e}}^{\frac {3\,{\ln \relax (3)}^2}{\mathrm {e}+{\mathrm {e}}^4-3}}\,{\mathrm {e}}^{-\frac {{\ln \left (x-5\right )}^2\,\mathrm {e}}{\mathrm {e}+{\mathrm {e}}^4-3}}\,{\mathrm {e}}^{-\frac {{\ln \left (x-5\right )}^2\,{\mathrm {e}}^4}{\mathrm {e}+{\mathrm {e}}^4-3}}\,{\mathrm {e}}^{-\frac {\mathrm {e}\,{\ln \relax (3)}^2}{\mathrm {e}+{\mathrm {e}}^4-3}}\,{\mathrm {e}}^{-\frac {{\mathrm {e}}^4\,{\ln \relax (3)}^2}{\mathrm {e}+{\mathrm {e}}^4-3}}\,{\mathrm {e}}^{-\frac {x}{\mathrm {e}+{\mathrm {e}}^4-3}}\,{\mathrm {e}}^{\frac {3\,{\ln \left (x-5\right )}^2}{\mathrm {e}+{\mathrm {e}}^4-3}}\,{\left (x-5\right )}^{2\,\ln \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.79, size = 60, normalized size = 2.00 \begin {gather*} e^{\frac {- x + \left (- e^{4} - e + 3\right ) \log {\left (x - 5 \right )}^{2} + \left (-6 + 2 e + 2 e^{4}\right ) \log {\relax (3 )} \log {\left (x - 5 \right )} + \left (- e^{4} - e + 3\right ) \log {\relax (3 )}^{2}}{-3 + e + e^{4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________