Optimal. Leaf size=21 \[ \log ^2(2) (5+x+\log (x)) \left (-10+x+\frac {\log ^2(x)}{125}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.11, antiderivative size = 69, normalized size of antiderivative = 3.29, number of steps used = 13, number of rules used = 8, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.170, Rules used = {12, 14, 2346, 2301, 2295, 2302, 30, 2296} \begin {gather*} x^2 \log ^2(2)+\frac {1}{125} x \log ^2(2) \log ^2(x)+\frac {1}{25} \log ^2(2) \log ^2(x)+x \log ^2(2) \log (x)-10 \log ^2(2) \log (x)-5 x \log ^2(2)+\frac {1}{125} \log ^2(2) \log ^3(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 30
Rule 2295
Rule 2296
Rule 2301
Rule 2302
Rule 2346
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{125} \int \frac {\left (-1250-500 x+250 x^2\right ) \log ^2(2)+(10+127 x) \log ^2(2) \log (x)+(3+x) \log ^2(2) \log ^2(x)}{x} \, dx\\ &=\frac {1}{125} \int \left (\frac {250 \left (-5-2 x+x^2\right ) \log ^2(2)}{x}+\frac {(10+127 x) \log ^2(2) \log (x)}{x}+\frac {(3+x) \log ^2(2) \log ^2(x)}{x}\right ) \, dx\\ &=\frac {1}{125} \log ^2(2) \int \frac {(10+127 x) \log (x)}{x} \, dx+\frac {1}{125} \log ^2(2) \int \frac {(3+x) \log ^2(x)}{x} \, dx+\left (2 \log ^2(2)\right ) \int \frac {-5-2 x+x^2}{x} \, dx\\ &=\frac {1}{125} \log ^2(2) \int \log ^2(x) \, dx+\frac {1}{125} \left (3 \log ^2(2)\right ) \int \frac {\log ^2(x)}{x} \, dx+\frac {1}{25} \left (2 \log ^2(2)\right ) \int \frac {\log (x)}{x} \, dx+\frac {1}{125} \left (127 \log ^2(2)\right ) \int \log (x) \, dx+\left (2 \log ^2(2)\right ) \int \left (-2-\frac {5}{x}+x\right ) \, dx\\ &=-\frac {627}{125} x \log ^2(2)+x^2 \log ^2(2)-10 \log ^2(2) \log (x)+\frac {127}{125} x \log ^2(2) \log (x)+\frac {1}{25} \log ^2(2) \log ^2(x)+\frac {1}{125} x \log ^2(2) \log ^2(x)-\frac {1}{125} \left (2 \log ^2(2)\right ) \int \log (x) \, dx+\frac {1}{125} \left (3 \log ^2(2)\right ) \operatorname {Subst}\left (\int x^2 \, dx,x,\log (x)\right )\\ &=-5 x \log ^2(2)+x^2 \log ^2(2)-10 \log ^2(2) \log (x)+x \log ^2(2) \log (x)+\frac {1}{25} \log ^2(2) \log ^2(x)+\frac {1}{125} x \log ^2(2) \log ^2(x)+\frac {1}{125} \log ^2(2) \log ^3(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 42, normalized size = 2.00 \begin {gather*} \frac {1}{125} \log ^2(2) \left (-625 x+125 x^2-1250 \log (x)+125 x \log (x)+5 \log ^2(x)+x \log ^2(x)+\log ^3(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.69, size = 46, normalized size = 2.19 \begin {gather*} \frac {1}{125} \, {\left (x + 5\right )} \log \relax (2)^{2} \log \relax (x)^{2} + \frac {1}{125} \, \log \relax (2)^{2} \log \relax (x)^{3} + {\left (x - 10\right )} \log \relax (2)^{2} \log \relax (x) + {\left (x^{2} - 5 \, x\right )} \log \relax (2)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.12, size = 61, normalized size = 2.90 \begin {gather*} \frac {1}{125} \, \log \relax (2)^{2} \log \relax (x)^{3} + x^{2} \log \relax (2)^{2} + x \log \relax (2)^{2} \log \relax (x) - 5 \, x \log \relax (2)^{2} - 10 \, \log \relax (2)^{2} \log \relax (x) + \frac {1}{125} \, {\left (x \log \relax (2)^{2} + 5 \, \log \relax (2)^{2}\right )} \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.05, size = 62, normalized size = 2.95
method | result | size |
risch | \(\frac {\ln \relax (2)^{2} \ln \relax (x )^{3}}{125}+\frac {\left (x \ln \relax (2)^{2}+5 \ln \relax (2)^{2}\right ) \ln \relax (x )^{2}}{125}+\ln \relax (x ) \ln \relax (2)^{2} x +x^{2} \ln \relax (2)^{2}-5 x \ln \relax (2)^{2}-10 \ln \relax (2)^{2} \ln \relax (x )\) | \(62\) |
norman | \(x^{2} \ln \relax (2)^{2}-10 \ln \relax (2)^{2} \ln \relax (x )+\ln \relax (x ) \ln \relax (2)^{2} x -5 x \ln \relax (2)^{2}+\frac {\ln \relax (2)^{2} \ln \relax (x )^{2}}{25}+\frac {\ln \relax (2)^{2} \ln \relax (x )^{3}}{125}+\frac {x \ln \relax (2)^{2} \ln \relax (x )^{2}}{125}\) | \(64\) |
default | \(\frac {\ln \relax (2)^{2} \left (x \ln \relax (x )^{2}-2 x \ln \relax (x )+2 x \right )}{125}+\frac {\ln \relax (2)^{2} \ln \relax (x )^{3}}{125}+\frac {127 \ln \relax (2)^{2} \left (x \ln \relax (x )-x \right )}{125}+x^{2} \ln \relax (2)^{2}+\frac {\ln \relax (2)^{2} \ln \relax (x )^{2}}{25}-4 x \ln \relax (2)^{2}-10 \ln \relax (2)^{2} \ln \relax (x )\) | \(80\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.34, size = 75, normalized size = 3.57 \begin {gather*} \frac {1}{125} \, \log \relax (2)^{2} \log \relax (x)^{3} + \frac {1}{125} \, {\left (\log \relax (x)^{2} - 2 \, \log \relax (x) + 2\right )} x \log \relax (2)^{2} + x^{2} \log \relax (2)^{2} + \frac {1}{25} \, \log \relax (2)^{2} \log \relax (x)^{2} + \frac {127}{125} \, {\left (x \log \relax (x) - x\right )} \log \relax (2)^{2} - 4 \, x \log \relax (2)^{2} - 10 \, \log \relax (2)^{2} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.67, size = 40, normalized size = 1.90 \begin {gather*} \frac {{\ln \relax (2)}^2\,\left (125\,x^2+x\,{\ln \relax (x)}^2+125\,x\,\ln \relax (x)-625\,x+{\ln \relax (x)}^3+5\,{\ln \relax (x)}^2-1250\,\ln \relax (x)\right )}{125} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 68, normalized size = 3.24 \begin {gather*} x^{2} \log {\relax (2 )}^{2} + x \log {\relax (2 )}^{2} \log {\relax (x )} - 5 x \log {\relax (2 )}^{2} + \left (\frac {x \log {\relax (2 )}^{2}}{125} + \frac {\log {\relax (2 )}^{2}}{25}\right ) \log {\relax (x )}^{2} + \frac {\log {\relax (2 )}^{2} \log {\relax (x )}^{3}}{125} - 10 \log {\relax (2 )}^{2} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________