Optimal. Leaf size=20 \[ \frac {x}{x+\left (4-e^{\frac {1}{x}}\right ) \log (2+x)} \]
________________________________________________________________________________________
Rubi [A] time = 1.04, antiderivative size = 24, normalized size of antiderivative = 1.20, number of steps used = 3, number of rules used = 3, integrand size = 136, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6688, 6711, 32} \begin {gather*} -\frac {1}{1-\frac {x}{\left (e^{\frac {1}{x}}-4\right ) \log (x+2)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-4+e^{\frac {1}{x}}\right ) x^2-(2+x) \left (-4 x+e^{\frac {1}{x}} (1+x)\right ) \log (2+x)}{x (2+x) \left (x-\left (-4+e^{\frac {1}{x}}\right ) \log (2+x)\right )^2} \, dx\\ &=\operatorname {Subst}\left (\int \frac {1}{(1+x)^2} \, dx,x,-\frac {x}{\left (-4+e^{\frac {1}{x}}\right ) \log (2+x)}\right )\\ &=-\frac {1}{1-\frac {x}{\left (-4+e^{\frac {1}{x}}\right ) \log (2+x)}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.49, size = 19, normalized size = 0.95 \begin {gather*} \frac {x}{x-\left (-4+e^{\frac {1}{x}}\right ) \log (2+x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 20, normalized size = 1.00 \begin {gather*} -\frac {x}{{\left (e^{\frac {1}{x}} - 4\right )} \log \left (x + 2\right ) - x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 24, normalized size = 1.20 \begin {gather*} -\frac {x}{e^{\frac {1}{x}} \log \left (x + 2\right ) - x - 4 \, \log \left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 23, normalized size = 1.15
method | result | size |
risch | \(\frac {x}{-\ln \left (2+x \right ) {\mathrm e}^{\frac {1}{x}}+x +4 \ln \left (2+x \right )}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 24, normalized size = 1.20 \begin {gather*} -\frac {x}{e^{\frac {1}{x}} \log \left (x + 2\right ) - x - 4 \, \log \left (x + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.09, size = 178, normalized size = 8.90 \begin {gather*} \frac {{\ln \left (x+2\right )}^2\,\left (4\,x+8\right )\,{\left (x^3+2\,x^2\right )}^2-x^3\,{\left (x^3+2\,x^2\right )}^2+\ln \left (x+2\right )\,{\left (x^3+2\,x^2\right )}^2\,\left (x^3+3\,x^2+2\,x\right )}{x\,\left (x+2\right )\,\left (x+4\,\ln \left (x+2\right )-\ln \left (x+2\right )\,{\mathrm {e}}^{1/x}\right )\,\left (x^6\,\ln \left (x+2\right )-x^6+5\,x^5\,\ln \left (x+2\right )-2\,x^5+4\,x^4\,{\ln \left (x+2\right )}^2+8\,x^4\,\ln \left (x+2\right )+16\,x^3\,{\ln \left (x+2\right )}^2+4\,x^3\,\ln \left (x+2\right )+16\,x^2\,{\ln \left (x+2\right )}^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 20, normalized size = 1.00 \begin {gather*} - \frac {x}{- x + e^{\frac {1}{x}} \log {\left (x + 2 \right )} - 4 \log {\left (x + 2 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________