Optimal. Leaf size=39 \[ e^9 \left (x-\frac {2+\frac {1}{4} \left (-e^{\frac {1}{2} (4+x+\log (3))}+x\right )}{i \pi +\log (3)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 57, normalized size of antiderivative = 1.46, number of steps used = 3, number of rules used = 2, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {12, 2203} \begin {gather*} \frac {e^{\frac {1}{2} (x+4+\log (3))+9}}{4 (\log (3)+i \pi )}-\frac {e^9 x (1-4 i \pi -\log (81))}{4 (\log (3)+i \pi )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2203
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-2 e^9+e^{9+\frac {1}{2} (4+x+\log (3))}+8 e^9 (i \pi +\log (3))\right ) \, dx}{8 (i \pi +\log (3))}\\ &=-\frac {e^9 x (1-4 i \pi -\log (81))}{4 (i \pi +\log (3))}+\frac {\int e^{9+\frac {1}{2} (4+x+\log (3))} \, dx}{8 (i \pi +\log (3))}\\ &=\frac {e^{9+\frac {1}{2} (4+x+\log (3))}}{4 (i \pi +\log (3))}-\frac {e^9 x (1-4 i \pi -\log (81))}{4 (i \pi +\log (3))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 48, normalized size = 1.23 \begin {gather*} \frac {e^9 \left (2 \sqrt {3} e^{2+\frac {x}{2}}-2 x+8 i \pi x+8 x \log (3)\right )}{8 (i \pi +\log (3))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.92, size = 38, normalized size = 0.97 \begin {gather*} \frac {{\left (4 i \, \pi - 1\right )} x e^{9} + 4 \, x e^{9} \log \relax (3) + e^{\left (\frac {1}{2} \, x + \frac {1}{2} \, \log \relax (3) + 11\right )}}{4 i \, \pi + 4 \, \log \relax (3)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 37, normalized size = 0.95 \begin {gather*} \frac {4 \, {\left (i \, \pi + \log \relax (3)\right )} x e^{9} - x e^{9} + e^{\left (\frac {1}{2} \, x + \frac {1}{2} \, \log \relax (3) + 11\right )}}{4 \, {\left (i \, \pi + \log \relax (3)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 46, normalized size = 1.18
method | result | size |
default | \(\frac {2 \,{\mathrm e}^{9} {\mathrm e}^{\frac {\ln \relax (3)}{2}+2+\frac {x}{2}}+8 i \pi \,{\mathrm e}^{9} x +8 \ln \relax (3) {\mathrm e}^{9} x -2 x \,{\mathrm e}^{9}}{8 \ln \relax (3)+8 i \pi }\) | \(46\) |
derivativedivides | \(\frac {{\mathrm e}^{9} \left ({\mathrm e}^{\frac {\ln \relax (3)}{2}+2+\frac {x}{2}}+\left (8 i \pi +8 \ln \relax (3)-2\right ) \ln \left ({\mathrm e}^{\frac {\ln \relax (3)}{2}+2+\frac {x}{2}}\right )\right )}{4 \ln \relax (3)+4 i \pi }\) | \(47\) |
risch | \(\frac {i {\mathrm e}^{9} x \pi }{\ln \relax (3)+i \pi }+\frac {{\mathrm e}^{9} x \ln \relax (3)}{\ln \relax (3)+i \pi }-\frac {{\mathrm e}^{9} x}{4 \left (\ln \relax (3)+i \pi \right )}+\frac {\sqrt {3}\, {\mathrm e}^{11+\frac {x}{2}}}{4 \ln \relax (3)+4 i \pi }\) | \(67\) |
norman | \(-\frac {{\mathrm e}^{9} \left (i \pi -\ln \relax (3)\right ) {\mathrm e}^{\frac {\ln \relax (3)}{2}+2+\frac {x}{2}}}{4 \left (\ln \relax (3)^{2}+\pi ^{2}\right )}+\frac {{\mathrm e}^{9} \left (4 \pi ^{2}+i \pi +4 \ln \relax (3)^{2}-\ln \relax (3)\right ) x}{4 \pi ^{2}+4 \ln \relax (3)^{2}}\) | \(70\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 37, normalized size = 0.95 \begin {gather*} \frac {4 \, {\left (i \, \pi + \log \relax (3)\right )} x e^{9} - x e^{9} + e^{\left (\frac {1}{2} \, x + \frac {1}{2} \, \log \relax (3) + 11\right )}}{4 \, {\left (i \, \pi + \log \relax (3)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 41, normalized size = 1.05 \begin {gather*} \frac {{\mathrm {e}}^9\,\left (x\,1{}\mathrm {i}+4\,\Pi \,x-x\,\ln \relax (3)\,4{}\mathrm {i}-\sqrt {3}\,{\mathrm {e}}^{x/2}\,{\mathrm {e}}^2\,1{}\mathrm {i}\right )}{4\,\left (\Pi -\ln \relax (3)\,1{}\mathrm {i}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 54, normalized size = 1.38 \begin {gather*} \frac {x \left (- e^{9} + 4 e^{9} \log {\relax (3 )} + 4 i \pi e^{9}\right )}{4 \log {\relax (3 )} + 4 i \pi } + \frac {\sqrt {3} e^{11} e^{\frac {x}{2}}}{4 \log {\relax (3 )} + 4 i \pi } \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________