Optimal. Leaf size=33 \[ \log \left (2+\frac {4}{x}+e^{e^{2-x}-x} \left (-1+e^x-x\right )^2 x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 65, normalized size = 1.97 \begin {gather*} e^{2-x}+x-\log (x)+\log \left (x^2-2 e^{-x} x^2 (1+x)+e^{-2 x} x^2 (1+x)^2+2 e^{-e^{2-x}-x} (2+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 98, normalized size = 2.97 \begin {gather*} -{\left (2 \, x e^{x} - e^{x} \log \left (x + 2\right ) + e^{x} \log \relax (x) - e^{x} \log \left (\frac {x^{2} e^{\left (3 \, x\right )} + 2 \, {\left (x + 2\right )} e^{\left ({\left (2 \, x e^{x} - e^{2}\right )} e^{\left (-x\right )}\right )} - 2 \, {\left (x^{3} + x^{2}\right )} e^{\left (2 \, x\right )} + {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} e^{x}}{x + 2}\right ) - e^{2}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left (x^{5} + 2 \, x^{4} + x^{3}\right )} e^{2} - {\left (x^{3} + x^{2}\right )} e^{\left (3 \, x\right )} + {\left (x^{3} e^{2} + 4 \, x^{3} + 2 \, x^{2}\right )} e^{\left (2 \, x\right )} + {\left (x^{5} - x^{4} - 3 \, x^{3} - x^{2} - 2 \, {\left (x^{4} + x^{3}\right )} e^{2}\right )} e^{x} + 4 \, e^{\left ({\left (x e^{x} - e^{2}\right )} e^{\left (-x\right )} + x\right )}}{x^{3} e^{\left (3 \, x\right )} + 2 \, {\left (x^{2} + 2 \, x\right )} e^{\left ({\left (x e^{x} - e^{2}\right )} e^{\left (-x\right )} + x\right )} - 2 \, {\left (x^{4} + x^{3}\right )} e^{\left (2 \, x\right )} + {\left (x^{5} + 2 \, x^{4} + x^{3}\right )} e^{x}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 73, normalized size = 2.21
method | result | size |
risch | \(-\ln \relax (x )+\ln \left (2+x \right )-\left ({\mathrm e}^{x} x -{\mathrm e}^{2}\right ) {\mathrm e}^{-x}+\ln \left ({\mathrm e}^{-\left (-{\mathrm e}^{x} x +{\mathrm e}^{2}\right ) {\mathrm e}^{-x}}+\frac {\left (x^{2}-2 \,{\mathrm e}^{x} x +{\mathrm e}^{2 x}+2 x -2 \,{\mathrm e}^{x}+1\right ) x^{2}}{2 x +4}\right )\) | \(73\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 98, normalized size = 2.97 \begin {gather*} -x + \log \relax (x) + 2 \, \log \left (-x + e^{x} - 1\right ) + \log \left (\frac {2 \, {\left (x + 2\right )} e^{x} + {\left (x^{4} + 2 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + x^{2} - 2 \, {\left (x^{3} + x^{2}\right )} e^{x}\right )} e^{\left (e^{\left (-x + 2\right )}\right )}}{x^{4} + 2 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + x^{2} - 2 \, {\left (x^{3} + x^{2}\right )} e^{x}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\mathrm {e}}^{2\,x}\,\left (x^3\,{\mathrm {e}}^2+2\,x^2+4\,x^3\right )+{\mathrm {e}}^2\,\left (x^5+2\,x^4+x^3\right )-{\mathrm {e}}^x\,\left ({\mathrm {e}}^2\,\left (2\,x^4+2\,x^3\right )+x^2+3\,x^3+x^4-x^5\right )-{\mathrm {e}}^{3\,x}\,\left (x^3+x^2\right )+4\,{\mathrm {e}}^{-{\mathrm {e}}^{-x}\,\left ({\mathrm {e}}^2-x\,{\mathrm {e}}^x\right )}\,{\mathrm {e}}^x}{x^3\,{\mathrm {e}}^{3\,x}-{\mathrm {e}}^{2\,x}\,\left (2\,x^4+2\,x^3\right )+{\mathrm {e}}^x\,\left (x^5+2\,x^4+x^3\right )+{\mathrm {e}}^{-{\mathrm {e}}^{-x}\,\left ({\mathrm {e}}^2-x\,{\mathrm {e}}^x\right )}\,{\mathrm {e}}^x\,\left (2\,x^2+4\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.73, size = 73, normalized size = 2.21 \begin {gather*} - x - \log {\relax (x )} + \log {\left (x + 2 \right )} + \log {\left (e^{\left (x e^{x} - e^{2}\right ) e^{- x}} + \frac {x^{4} - 2 x^{3} e^{x} + 2 x^{3} + x^{2} e^{2 x} - 2 x^{2} e^{x} + x^{2}}{2 x + 4} \right )} + e^{2} e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________