Optimal. Leaf size=28 \[ \frac {8 \left (x^2+\frac {4}{5-x \left (x-e^{-x} x\right )}\right )}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 4.35, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} \left (-320+128 x^2\right )+e^x \left (-128 x^2+32 x^3\right )}{x^7+e^x \left (10 x^5-2 x^7\right )+e^{2 x} \left (25 x^3-10 x^5+x^7\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 e^x \left ((-4+x) x^2+2 e^x \left (-5+2 x^2\right )\right )}{x^3 \left (x^2-e^x \left (-5+x^2\right )\right )^2} \, dx\\ &=32 \int \frac {e^x \left ((-4+x) x^2+2 e^x \left (-5+2 x^2\right )\right )}{x^3 \left (x^2-e^x \left (-5+x^2\right )\right )^2} \, dx\\ &=32 \int \left (\frac {2 e^x \left (-5+2 x^2\right )}{x^3 \left (-5+x^2\right ) \left (-5 e^x-x^2+e^x x^2\right )}+\frac {e^x \left (10-5 x+x^3\right )}{x \left (-5+x^2\right ) \left (-5 e^x-x^2+e^x x^2\right )^2}\right ) \, dx\\ &=32 \int \frac {e^x \left (10-5 x+x^3\right )}{x \left (-5+x^2\right ) \left (-5 e^x-x^2+e^x x^2\right )^2} \, dx+64 \int \frac {e^x \left (-5+2 x^2\right )}{x^3 \left (-5+x^2\right ) \left (-5 e^x-x^2+e^x x^2\right )} \, dx\\ &=32 \int \left (\frac {e^x}{\left (-5 e^x-x^2+e^x x^2\right )^2}-\frac {2 e^x}{x \left (-5 e^x-x^2+e^x x^2\right )^2}+\frac {2 e^x x}{\left (-5+x^2\right ) \left (-5 e^x-x^2+e^x x^2\right )^2}\right ) \, dx+64 \int \left (\frac {e^x}{x^3 \left (-5 e^x-x^2+e^x x^2\right )}-\frac {e^x}{5 x \left (-5 e^x-x^2+e^x x^2\right )}+\frac {e^x x}{5 \left (-5+x^2\right ) \left (-5 e^x-x^2+e^x x^2\right )}\right ) \, dx\\ &=-\left (\frac {64}{5} \int \frac {e^x}{x \left (-5 e^x-x^2+e^x x^2\right )} \, dx\right )+\frac {64}{5} \int \frac {e^x x}{\left (-5+x^2\right ) \left (-5 e^x-x^2+e^x x^2\right )} \, dx+32 \int \frac {e^x}{\left (-5 e^x-x^2+e^x x^2\right )^2} \, dx-64 \int \frac {e^x}{x \left (-5 e^x-x^2+e^x x^2\right )^2} \, dx+64 \int \frac {e^x x}{\left (-5+x^2\right ) \left (-5 e^x-x^2+e^x x^2\right )^2} \, dx+64 \int \frac {e^x}{x^3 \left (-5 e^x-x^2+e^x x^2\right )} \, dx\\ &=-\left (\frac {64}{5} \int \frac {e^x}{x \left (-5 e^x-x^2+e^x x^2\right )} \, dx\right )+\frac {64}{5} \int \left (-\frac {e^x}{2 \left (\sqrt {5}-x\right ) \left (-5 e^x-x^2+e^x x^2\right )}+\frac {e^x}{2 \left (\sqrt {5}+x\right ) \left (-5 e^x-x^2+e^x x^2\right )}\right ) \, dx+32 \int \frac {e^x}{\left (-5 e^x-x^2+e^x x^2\right )^2} \, dx-64 \int \frac {e^x}{x \left (-5 e^x-x^2+e^x x^2\right )^2} \, dx+64 \int \frac {e^x}{x^3 \left (-5 e^x-x^2+e^x x^2\right )} \, dx+64 \int \left (-\frac {e^x}{2 \left (\sqrt {5}-x\right ) \left (-5 e^x-x^2+e^x x^2\right )^2}+\frac {e^x}{2 \left (\sqrt {5}+x\right ) \left (-5 e^x-x^2+e^x x^2\right )^2}\right ) \, dx\\ &=-\left (\frac {32}{5} \int \frac {e^x}{\left (\sqrt {5}-x\right ) \left (-5 e^x-x^2+e^x x^2\right )} \, dx\right )+\frac {32}{5} \int \frac {e^x}{\left (\sqrt {5}+x\right ) \left (-5 e^x-x^2+e^x x^2\right )} \, dx-\frac {64}{5} \int \frac {e^x}{x \left (-5 e^x-x^2+e^x x^2\right )} \, dx+32 \int \frac {e^x}{\left (-5 e^x-x^2+e^x x^2\right )^2} \, dx-32 \int \frac {e^x}{\left (\sqrt {5}-x\right ) \left (-5 e^x-x^2+e^x x^2\right )^2} \, dx+32 \int \frac {e^x}{\left (\sqrt {5}+x\right ) \left (-5 e^x-x^2+e^x x^2\right )^2} \, dx-64 \int \frac {e^x}{x \left (-5 e^x-x^2+e^x x^2\right )^2} \, dx+64 \int \frac {e^x}{x^3 \left (-5 e^x-x^2+e^x x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.74, size = 24, normalized size = 0.86 \begin {gather*} \frac {32 e^x}{x^4-e^x x^2 \left (-5+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 23, normalized size = 0.82 \begin {gather*} \frac {32 \, e^{x}}{x^{4} - {\left (x^{4} - 5 \, x^{2}\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 25, normalized size = 0.89 \begin {gather*} -\frac {32 \, e^{x}}{x^{4} e^{x} - x^{4} - 5 \, x^{2} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 26, normalized size = 0.93
method | result | size |
norman | \(-\frac {32 \,{\mathrm e}^{x}}{x^{2} \left ({\mathrm e}^{x} x^{2}-x^{2}-5 \,{\mathrm e}^{x}\right )}\) | \(26\) |
risch | \(-\frac {32}{\left (x^{2}-5\right ) x^{2}}-\frac {32}{\left (x^{2}-5\right ) \left ({\mathrm e}^{x} x^{2}-x^{2}-5 \,{\mathrm e}^{x}\right )}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 23, normalized size = 0.82 \begin {gather*} \frac {32 \, e^{x}}{x^{4} - {\left (x^{4} - 5 \, x^{2}\right )} e^{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.54, size = 29, normalized size = 1.04 \begin {gather*} \frac {\frac {32\,{\mathrm {e}}^x}{5}-\frac {32}{5}}{5\,{\mathrm {e}}^x-x^2\,\left ({\mathrm {e}}^x-1\right )}+\frac {32}{5\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 34, normalized size = 1.21 \begin {gather*} - \frac {32}{- x^{4} + 5 x^{2} + \left (x^{4} - 10 x^{2} + 25\right ) e^{x}} - \frac {32}{x^{4} - 5 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________