Optimal. Leaf size=27 \[ e^{1-\frac {x^2}{4}} \log ^2\left (20+x-e^5 x+x^2\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 66, normalized size of antiderivative = 2.44, number of steps used = 2, number of rules used = 2, integrand size = 91, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6, 2288} \begin {gather*} \frac {e^{\frac {1}{4} \left (4-x^2\right )} \left (x^3-e^5 x^2+x^2+20 x\right ) \log ^2\left (x^2-e^5 x+x+20\right )}{x \left (x^2+\left (1-e^5\right ) x+20\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{4} \left (4-x^2\right )} \left (\left (-4+4 e^5-8 x\right ) \log \left (20+x-e^5 x+x^2\right )+\left (20 x+x^2-e^5 x^2+x^3\right ) \log ^2\left (20+x-e^5 x+x^2\right )\right )}{-40+\left (-2+2 e^5\right ) x-2 x^2} \, dx\\ &=\frac {e^{\frac {1}{4} \left (4-x^2\right )} \left (20 x+x^2-e^5 x^2+x^3\right ) \log ^2\left (20+x-e^5 x+x^2\right )}{x \left (20+\left (1-e^5\right ) x+x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 27, normalized size = 1.00 \begin {gather*} e^{1-\frac {x^2}{4}} \log ^2\left (20+x-e^5 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 23, normalized size = 0.85 \begin {gather*} e^{\left (-\frac {1}{4} \, x^{2} + 1\right )} \log \left (x^{2} - x e^{5} + x + 20\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 23, normalized size = 0.85 \begin {gather*} e^{\left (-\frac {1}{4} \, x^{2} + 1\right )} \log \left (x^{2} - x e^{5} + x + 20\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.62, size = 25, normalized size = 0.93
method | result | size |
risch | \(\ln \left (-x \,{\mathrm e}^{5}+x^{2}+x +20\right )^{2} {\mathrm e}^{-\frac {\left (x -2\right ) \left (2+x \right )}{4}}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 24, normalized size = 0.89 \begin {gather*} e^{\left (-\frac {1}{4} \, x^{2} + 1\right )} \log \left (x^{2} - x {\left (e^{5} - 1\right )} + 20\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.28, size = 23, normalized size = 0.85 \begin {gather*} {\ln \left (x-x\,{\mathrm {e}}^5+x^2+20\right )}^2\,\mathrm {e}\,{\mathrm {e}}^{-\frac {x^2}{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________