Optimal. Leaf size=24 \[ -e^{e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}}+x \]
________________________________________________________________________________________
Rubi [F] time = 25.21, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-5+x+x^2+\frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right ) \left (1+2 x+e^{x^2} \left (10 x-2 x^2-2 x^3\right )\right )}{-5+x+x^2}}{-5+x+x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1-\frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right ) \left (-1-2 x-10 e^{x^2} x+2 e^{x^2} x^2+2 e^{x^2} x^3\right )}{\left (-5+x+x^2\right )^2}\right ) \, dx\\ &=x-\int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right ) \left (-1-2 x-10 e^{x^2} x+2 e^{x^2} x^2+2 e^{x^2} x^3\right )}{\left (-5+x+x^2\right )^2} \, dx\\ &=x-\int \left (\frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right ) (-1-2 x)}{\left (-5+x+x^2\right )^2}+\frac {2 \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right ) x}{-5+x+x^2}\right ) \, dx\\ &=x-2 \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right ) x}{-5+x+x^2} \, dx-\int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right ) (-1-2 x)}{\left (-5+x+x^2\right )^2} \, dx\\ &=x-2 \int \left (\frac {\left (1-\frac {1}{\sqrt {21}}\right ) \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{1-\sqrt {21}+2 x}+\frac {\left (1+\frac {1}{\sqrt {21}}\right ) \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{1+\sqrt {21}+2 x}\right ) \, dx-\int \left (-\frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{\left (-5+x+x^2\right )^2}-\frac {2 \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right ) x}{\left (-5+x+x^2\right )^2}\right ) \, dx\\ &=x+2 \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right ) x}{\left (-5+x+x^2\right )^2} \, dx-\frac {1}{21} \left (2 \left (21-\sqrt {21}\right )\right ) \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{1-\sqrt {21}+2 x} \, dx-\frac {1}{21} \left (2 \left (21+\sqrt {21}\right )\right ) \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{1+\sqrt {21}+2 x} \, dx+\int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{\left (-5+x+x^2\right )^2} \, dx\\ &=x+2 \int \left (\frac {2 \left (-1+\sqrt {21}\right ) \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{21 \left (-1+\sqrt {21}-2 x\right )^2}-\frac {2 \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{21 \sqrt {21} \left (-1+\sqrt {21}-2 x\right )}+\frac {2 \left (-1-\sqrt {21}\right ) \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{21 \left (1+\sqrt {21}+2 x\right )^2}-\frac {2 \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{21 \sqrt {21} \left (1+\sqrt {21}+2 x\right )}\right ) \, dx-\frac {1}{21} \left (2 \left (21-\sqrt {21}\right )\right ) \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{1-\sqrt {21}+2 x} \, dx-\frac {1}{21} \left (2 \left (21+\sqrt {21}\right )\right ) \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{1+\sqrt {21}+2 x} \, dx+\int \left (\frac {4 \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{21 \left (-1+\sqrt {21}-2 x\right )^2}+\frac {4 \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{21 \sqrt {21} \left (-1+\sqrt {21}-2 x\right )}+\frac {4 \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{21 \left (1+\sqrt {21}+2 x\right )^2}+\frac {4 \exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{21 \sqrt {21} \left (1+\sqrt {21}+2 x\right )}\right ) \, dx\\ &=x+\frac {4}{21} \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{\left (-1+\sqrt {21}-2 x\right )^2} \, dx+\frac {4}{21} \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{\left (1+\sqrt {21}+2 x\right )^2} \, dx-\frac {1}{21} \left (4 \left (1-\sqrt {21}\right )\right ) \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{\left (-1+\sqrt {21}-2 x\right )^2} \, dx-\frac {1}{21} \left (2 \left (21-\sqrt {21}\right )\right ) \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{1-\sqrt {21}+2 x} \, dx-\frac {1}{21} \left (4 \left (1+\sqrt {21}\right )\right ) \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{\left (1+\sqrt {21}+2 x\right )^2} \, dx-\frac {1}{21} \left (2 \left (21+\sqrt {21}\right )\right ) \int \frac {\exp \left (e^{x^2}+e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}+x^2+\frac {e^{e^{x^2}}}{-5+x+x^2}\right )}{1+\sqrt {21}+2 x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 24, normalized size = 1.00 \begin {gather*} -e^{e^{\frac {e^{e^{x^2}}}{-5+x+x^2}}}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.50, size = 114, normalized size = 4.75 \begin {gather*} {\left (x e^{\left (e^{\left (x^{2}\right )} + e^{\left (e^{\left (x^{2}\right )} - \log \left (x^{2} + x - 5\right )\right )} - \log \left (x^{2} + x - 5\right )\right )} - e^{\left (e^{\left (x^{2}\right )} + e^{\left (e^{\left (x^{2}\right )} - \log \left (x^{2} + x - 5\right )\right )} + e^{\left (e^{\left (e^{\left (x^{2}\right )} - \log \left (x^{2} + x - 5\right )\right )}\right )} - \log \left (x^{2} + x - 5\right )\right )}\right )} e^{\left (-e^{\left (x^{2}\right )} - e^{\left (e^{\left (x^{2}\right )} - \log \left (x^{2} + x - 5\right )\right )} + \log \left (x^{2} + x - 5\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2} - {\left (2 \, {\left (x^{3} + x^{2} - 5 \, x\right )} e^{\left (x^{2}\right )} - 2 \, x - 1\right )} e^{\left (e^{\left (x^{2}\right )} + e^{\left (e^{\left (x^{2}\right )} - \log \left (x^{2} + x - 5\right )\right )} + e^{\left (e^{\left (e^{\left (x^{2}\right )} - \log \left (x^{2} + x - 5\right )\right )}\right )} - \log \left (x^{2} + x - 5\right )\right )} + x - 5}{x^{2} + x - 5}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.62, size = 21, normalized size = 0.88
method | result | size |
risch | \(x -{\mathrm e}^{{\mathrm e}^{\frac {{\mathrm e}^{{\mathrm e}^{x^{2}}}}{x^{2}+x -5}}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.78, size = 20, normalized size = 0.83 \begin {gather*} x - e^{\left (e^{\left (\frac {e^{\left (e^{\left (x^{2}\right )}\right )}}{x^{2} + x - 5}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.20, size = 20, normalized size = 0.83 \begin {gather*} x-{\mathrm {e}}^{{\mathrm {e}}^{\frac {{\mathrm {e}}^{{\mathrm {e}}^{x^2}}}{x^2+x-5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 60.51, size = 17, normalized size = 0.71 \begin {gather*} x - e^{e^{\frac {e^{e^{x^{2}}}}{x^{2} + x - 5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________