Optimal. Leaf size=25 \[ \log \left (\frac {x+e^4 x \log (x)}{\log \left (\frac {5+\log (2)}{6+\log (x)}\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.51, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 12, number of rules used = 7, integrand size = 87, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {6, 6688, 6728, 43, 2390, 2302, 29} \begin {gather*} \log (x)+\log \left (e^4 \log (x)+1\right )-\log \left (\log \left (\frac {5+\log (2)}{\log (x)+6}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 29
Rule 43
Rule 2302
Rule 2390
Rule 6688
Rule 6728
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {1+e^4 x+6 \log \left (\frac {5+\log (2)}{6+x}\right )+6 e^4 \log \left (\frac {5+\log (2)}{6+x}\right )+x \log \left (\frac {5+\log (2)}{6+x}\right )+7 e^4 x \log \left (\frac {5+\log (2)}{6+x}\right )+e^4 x^2 \log \left (\frac {5+\log (2)}{6+x}\right )}{\left (6+x+6 e^4 x+e^4 x^2\right ) \log \left (\frac {5+\log (2)}{6+x}\right )} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {1+e^4 x+6 \log \left (\frac {5+\log (2)}{6+x}\right )+6 e^4 \log \left (\frac {5+\log (2)}{6+x}\right )+x \log \left (\frac {5+\log (2)}{6+x}\right )+7 e^4 x \log \left (\frac {5+\log (2)}{6+x}\right )+e^4 x^2 \log \left (\frac {5+\log (2)}{6+x}\right )}{\left (6+\left (1+6 e^4\right ) x+e^4 x^2\right ) \log \left (\frac {5+\log (2)}{6+x}\right )} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {1+e^4 x+\left (6+6 e^4\right ) \log \left (\frac {5+\log (2)}{6+x}\right )+x \log \left (\frac {5+\log (2)}{6+x}\right )+7 e^4 x \log \left (\frac {5+\log (2)}{6+x}\right )+e^4 x^2 \log \left (\frac {5+\log (2)}{6+x}\right )}{\left (6+\left (1+6 e^4\right ) x+e^4 x^2\right ) \log \left (\frac {5+\log (2)}{6+x}\right )} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {1+e^4 x+\left (6+6 e^4\right ) \log \left (\frac {5+\log (2)}{6+x}\right )+\left (1+7 e^4\right ) x \log \left (\frac {5+\log (2)}{6+x}\right )+e^4 x^2 \log \left (\frac {5+\log (2)}{6+x}\right )}{\left (6+\left (1+6 e^4\right ) x+e^4 x^2\right ) \log \left (\frac {5+\log (2)}{6+x}\right )} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {1+e^4 x+\left (6+x+e^4 \left (6+7 x+x^2\right )\right ) \log \left (\frac {5+\log (2)}{6+x}\right )}{\left (6+\left (1+6 e^4\right ) x+e^4 x^2\right ) \log \left (\frac {5+\log (2)}{6+x}\right )} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \left (\frac {1+e^4+e^4 x}{1+e^4 x}+\frac {1}{(6+x) \log \left (\frac {5+\log (2)}{6+x}\right )}\right ) \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {1+e^4+e^4 x}{1+e^4 x} \, dx,x,\log (x)\right )+\operatorname {Subst}\left (\int \frac {1}{(6+x) \log \left (\frac {5+\log (2)}{6+x}\right )} \, dx,x,\log (x)\right )\\ &=\operatorname {Subst}\left (\int \left (1+\frac {e^4}{1+e^4 x}\right ) \, dx,x,\log (x)\right )+\operatorname {Subst}\left (\int \frac {1}{x \log \left (\frac {5+\log (2)}{x}\right )} \, dx,x,6+\log (x)\right )\\ &=\log (x)+\log \left (1+e^4 \log (x)\right )-\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (\frac {5+\log (2)}{6+\log (x)}\right )\right )\\ &=\log (x)+\log \left (1+e^4 \log (x)\right )-\log \left (\log \left (\frac {5+\log (2)}{6+\log (x)}\right )\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 28, normalized size = 1.12 \begin {gather*} 6+\log (x)+\log \left (1+e^4 \log (x)\right )-\log \left (\log \left (\frac {5+\log (2)}{6+\log (x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 26, normalized size = 1.04 \begin {gather*} \log \left (e^{4} \log \relax (x) + 1\right ) + \log \relax (x) - \log \left (\log \left (\frac {\log \relax (2) + 5}{\log \relax (x) + 6}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.41, size = 27, normalized size = 1.08 \begin {gather*} \log \left (e^{4} \log \relax (x) + 1\right ) + \log \relax (x) - \log \left (-\log \left (\log \relax (2) + 5\right ) + \log \left (\log \relax (x) + 6\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.61, size = 26, normalized size = 1.04
method | result | size |
risch | \(\ln \relax (x )+\ln \left (\ln \relax (x )+{\mathrm e}^{-4}\right )-\ln \left (\ln \left (\ln \relax (x )+6\right )-\ln \left (\ln \relax (2)+5\right )\right )\) | \(26\) |
norman | \(\ln \relax (x )-\ln \left (\ln \left (\frac {\ln \relax (2)+5}{\ln \relax (x )+6}\right )\right )+\ln \left ({\mathrm e}^{4} \ln \relax (x )+1\right )\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 30, normalized size = 1.20 \begin {gather*} \log \left ({\left (e^{4} \log \relax (x) + 1\right )} e^{\left (-4\right )}\right ) + \log \relax (x) - \log \left (-\log \left (\log \relax (2) + 5\right ) + \log \left (\log \relax (x) + 6\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.91, size = 24, normalized size = 0.96 \begin {gather*} \ln \left ({\mathrm {e}}^{-4}+\ln \relax (x)\right )-\ln \left (\ln \left (\frac {\ln \relax (2)+5}{\ln \relax (x)+6}\right )\right )+\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 26, normalized size = 1.04 \begin {gather*} \log {\relax (x )} + \log {\left (\log {\relax (x )} + e^{-4} \right )} - \log {\left (\log {\left (\frac {\log {\relax (2 )} + 5}{\log {\relax (x )} + 6} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________