Optimal. Leaf size=24 \[ 3+\frac {x \log (5)}{(1+x)^2}-\log ^2\left (\frac {9 (2+x)}{x}\right ) \]
________________________________________________________________________________________
Rubi [C] time = 0.33, antiderivative size = 60, normalized size of antiderivative = 2.50, number of steps used = 17, number of rules used = 13, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.188, Rules used = {6688, 6742, 24, 34, 2466, 2454, 2392, 2391, 2462, 260, 2416, 2390, 2301} \begin {gather*} 2 \text {Li}_2\left (-\frac {2}{x}\right )+2 \text {Li}_2\left (-\frac {x}{2}\right )+\log ^2(x+2)-2 \log \left (\frac {18}{x}+9\right ) \log (x+2)+2 \log (9) \log (x)-2 \log (2) \log (x)+\frac {x \log (5)}{(x+1)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 24
Rule 34
Rule 260
Rule 2301
Rule 2390
Rule 2391
Rule 2392
Rule 2416
Rule 2454
Rule 2462
Rule 2466
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\frac {-x \log (5)-x^2 \log (5)+\log (25)}{(1+x)^3}+\frac {4 \log \left (\frac {9 (2+x)}{x}\right )}{x}}{2+x} \, dx\\ &=\int \left (\frac {-x \log (5)-x^2 \log (5)+\log (25)}{(1+x)^3 (2+x)}+\frac {4 \log \left (9+\frac {18}{x}\right )}{x (2+x)}\right ) \, dx\\ &=4 \int \frac {\log \left (9+\frac {18}{x}\right )}{x (2+x)} \, dx+\int \frac {-x \log (5)-x^2 \log (5)+\log (25)}{(1+x)^3 (2+x)} \, dx\\ &=4 \int \left (\frac {\log \left (9+\frac {18}{x}\right )}{2 x}-\frac {\log \left (9+\frac {18}{x}\right )}{2 (2+x)}\right ) \, dx+\int \frac {\log (5)-x \log (5)}{(1+x)^3} \, dx\\ &=\frac {x \log (5)}{(1+x)^2}+2 \int \frac {\log \left (9+\frac {18}{x}\right )}{x} \, dx-2 \int \frac {\log \left (9+\frac {18}{x}\right )}{2+x} \, dx\\ &=\frac {x \log (5)}{(1+x)^2}-2 \log \left (9+\frac {18}{x}\right ) \log (2+x)-2 \operatorname {Subst}\left (\int \frac {\log (9+18 x)}{x} \, dx,x,\frac {1}{x}\right )-36 \int \frac {\log (2+x)}{\left (9+\frac {18}{x}\right ) x^2} \, dx\\ &=\frac {x \log (5)}{(1+x)^2}+2 \log (9) \log (x)-2 \log \left (9+\frac {18}{x}\right ) \log (2+x)-2 \operatorname {Subst}\left (\int \frac {\log (1+2 x)}{x} \, dx,x,\frac {1}{x}\right )-36 \int \left (\frac {\log (2+x)}{18 x}-\frac {\log (2+x)}{18 (2+x)}\right ) \, dx\\ &=\frac {x \log (5)}{(1+x)^2}+2 \log (9) \log (x)-2 \log \left (9+\frac {18}{x}\right ) \log (2+x)+2 \text {Li}_2\left (-\frac {2}{x}\right )-2 \int \frac {\log (2+x)}{x} \, dx+2 \int \frac {\log (2+x)}{2+x} \, dx\\ &=\frac {x \log (5)}{(1+x)^2}-2 \log (2) \log (x)+2 \log (9) \log (x)-2 \log \left (9+\frac {18}{x}\right ) \log (2+x)+2 \text {Li}_2\left (-\frac {2}{x}\right )-2 \int \frac {\log \left (1+\frac {x}{2}\right )}{x} \, dx+2 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,2+x\right )\\ &=\frac {x \log (5)}{(1+x)^2}-2 \log (2) \log (x)+2 \log (9) \log (x)-2 \log \left (9+\frac {18}{x}\right ) \log (2+x)+\log ^2(2+x)+2 \text {Li}_2\left (-\frac {2}{x}\right )+2 \text {Li}_2\left (-\frac {x}{2}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.13, size = 85, normalized size = 3.54 \begin {gather*} \frac {\log (5)}{1+x}-\frac {\log (25)}{2 (1+x)^2}+\log ^2(-2-x)-2 \log (-2-x) \log \left (-\frac {x}{2}\right )+2 \log (9) \log (x)-2 \log (-2-x) \log \left (\frac {9 (2+x)}{x}\right )+2 \text {Li}_2\left (-\frac {2}{x}\right )-2 \text {Li}_2\left (\frac {2+x}{2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 38, normalized size = 1.58 \begin {gather*} -\frac {{\left (x^{2} + 2 \, x + 1\right )} \log \left (\frac {9 \, {\left (x + 2\right )}}{x}\right )^{2} - x \log \relax (5)}{x^{2} + 2 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 51, normalized size = 2.12 \begin {gather*} -\log \left (\frac {9 \, {\left (x + 2\right )}}{x}\right )^{2} + \frac {2 \, {\left (\frac {{\left (x + 2\right )} \log \relax (5)}{x} - \log \relax (5)\right )}}{\frac {{\left (x + 2\right )}^{2}}{x^{2}} + \frac {2 \, {\left (x + 2\right )}}{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.24, size = 31, normalized size = 1.29
method | result | size |
risch | \(-\frac {\ln \relax (5)}{\left (x +1\right )^{2}}+\frac {\ln \relax (5)}{x +1}-\ln \left (9+\frac {18}{x}\right )^{2}\) | \(31\) |
derivativedivides | \(-\frac {324 \ln \relax (5)}{\left (\frac {18}{x}+18\right )^{2}}+\frac {18 \ln \relax (5)}{\frac {18}{x}+18}-\ln \left (9+\frac {18}{x}\right )^{2}\) | \(40\) |
default | \(-\frac {324 \ln \relax (5)}{\left (\frac {18}{x}+18\right )^{2}}+\frac {18 \ln \relax (5)}{\frac {18}{x}+18}-\ln \left (9+\frac {18}{x}\right )^{2}\) | \(40\) |
norman | \(\frac {x \ln \relax (5)-\ln \left (\frac {9 x +18}{x}\right )^{2}-2 x \ln \left (\frac {9 x +18}{x}\right )^{2}-x^{2} \ln \left (\frac {9 x +18}{x}\right )^{2}}{\left (x +1\right )^{2}}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 99, normalized size = 4.12 \begin {gather*} -\frac {{\left (x^{2} + 2 \, x + 1\right )} \log \left (x + 2\right )^{2} + {\left (x^{2} + 2 \, x + 1\right )} \log \relax (x)^{2} - x \log \relax (5) + 2 \, {\left (2 \, x^{2} \log \relax (3) + 4 \, x \log \relax (3) - {\left (x^{2} + 2 \, x + 1\right )} \log \relax (x) + 2 \, \log \relax (3)\right )} \log \left (x + 2\right ) - 4 \, {\left (x^{2} \log \relax (3) + 2 \, x \log \relax (3) + \log \relax (3)\right )} \log \relax (x)}{x^{2} + 2 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.28, size = 24, normalized size = 1.00 \begin {gather*} \frac {x\,\ln \relax (5)}{{\left (x+1\right )}^2}-{\ln \left (\frac {9\,x+18}{x}\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.20, size = 22, normalized size = 0.92 \begin {gather*} \frac {x \log {\relax (5 )}}{x^{2} + 2 x + 1} - \log {\left (\frac {9 x + 18}{x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________