Optimal. Leaf size=29 \[ \left (-e^{x^2}+\frac {5 e^{5+x-\frac {x^2}{25}}}{x}\right )^4 x \]
________________________________________________________________________________________
Rubi [B] time = 2.01, antiderivative size = 129, normalized size of antiderivative = 4.45, number of steps used = 13, number of rules used = 8, integrand size = 140, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.057, Rules used = {12, 6688, 6742, 2236, 2226, 2204, 2212, 2288} \begin {gather*} e^{4 x^2} x-20 e^{\frac {74 x^2}{25}+x+5}+\frac {150 e^{\frac {48 x^2}{25}+2 x+10} \left (48 x^2+25 x\right )}{(48 x+25) x^2}+\frac {625 e^{-\frac {4 x^2}{25}+4 x+20} \left (25 x-2 x^2\right )}{(25-2 x) x^4}-\frac {500 e^{\frac {22 x^2}{25}+3 x+15} \left (44 x^2+75 x\right )}{(44 x+75) x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2204
Rule 2212
Rule 2226
Rule 2236
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {e^{-\frac {4 x^2}{25}} \left (e^{20+4 x} \left (-9375+12500 x-1000 x^2\right )+e^{15+3 x+\frac {26 x^2}{25}} \left (5000 x-7500 x^2-4400 x^3\right )+e^{10+2 x+\frac {52 x^2}{25}} \left (-750 x^2+1500 x^3+2880 x^4\right )+e^{5+x+\frac {78 x^2}{25}} \left (-100 x^4-592 x^5\right )+e^{\frac {104 x^2}{25}} \left (5 x^4+40 x^6\right )\right )}{x^4} \, dx\\ &=\frac {1}{5} \int \frac {e^{-\frac {4 x^2}{25}} \left (5 e^{5+x}-e^{\frac {26 x^2}{25}} x\right )^3 \left (-5 e^{\frac {26 x^2}{25}} x \left (1+8 x^2\right )-e^{5+x} \left (75-100 x+8 x^2\right )\right )}{x^4} \, dx\\ &=\frac {1}{5} \int \left (-4 e^{5+x+\frac {74 x^2}{25}} (25+148 x)+5 e^{4 x^2} \left (1+8 x^2\right )-\frac {125 e^{20+4 x-\frac {4 x^2}{25}} \left (75-100 x+8 x^2\right )}{x^4}-\frac {100 e^{15+3 x+\frac {22 x^2}{25}} \left (-50+75 x+44 x^2\right )}{x^3}+\frac {30 e^{10+2 x+\frac {48 x^2}{25}} \left (-25+50 x+96 x^2\right )}{x^2}\right ) \, dx\\ &=-\left (\frac {4}{5} \int e^{5+x+\frac {74 x^2}{25}} (25+148 x) \, dx\right )+6 \int \frac {e^{10+2 x+\frac {48 x^2}{25}} \left (-25+50 x+96 x^2\right )}{x^2} \, dx-20 \int \frac {e^{15+3 x+\frac {22 x^2}{25}} \left (-50+75 x+44 x^2\right )}{x^3} \, dx-25 \int \frac {e^{20+4 x-\frac {4 x^2}{25}} \left (75-100 x+8 x^2\right )}{x^4} \, dx+\int e^{4 x^2} \left (1+8 x^2\right ) \, dx\\ &=-20 e^{5+x+\frac {74 x^2}{25}}+\frac {625 e^{20+4 x-\frac {4 x^2}{25}} \left (25 x-2 x^2\right )}{(25-2 x) x^4}-\frac {500 e^{15+3 x+\frac {22 x^2}{25}} \left (75 x+44 x^2\right )}{x^3 (75+44 x)}+\frac {150 e^{10+2 x+\frac {48 x^2}{25}} \left (25 x+48 x^2\right )}{x^2 (25+48 x)}+\int \left (e^{4 x^2}+8 e^{4 x^2} x^2\right ) \, dx\\ &=-20 e^{5+x+\frac {74 x^2}{25}}+\frac {625 e^{20+4 x-\frac {4 x^2}{25}} \left (25 x-2 x^2\right )}{(25-2 x) x^4}-\frac {500 e^{15+3 x+\frac {22 x^2}{25}} \left (75 x+44 x^2\right )}{x^3 (75+44 x)}+\frac {150 e^{10+2 x+\frac {48 x^2}{25}} \left (25 x+48 x^2\right )}{x^2 (25+48 x)}+8 \int e^{4 x^2} x^2 \, dx+\int e^{4 x^2} \, dx\\ &=-20 e^{5+x+\frac {74 x^2}{25}}+e^{4 x^2} x+\frac {625 e^{20+4 x-\frac {4 x^2}{25}} \left (25 x-2 x^2\right )}{(25-2 x) x^4}-\frac {500 e^{15+3 x+\frac {22 x^2}{25}} \left (75 x+44 x^2\right )}{x^3 (75+44 x)}+\frac {150 e^{10+2 x+\frac {48 x^2}{25}} \left (25 x+48 x^2\right )}{x^2 (25+48 x)}+\frac {1}{4} \sqrt {\pi } \text {erfi}(2 x)-\int e^{4 x^2} \, dx\\ &=-20 e^{5+x+\frac {74 x^2}{25}}+e^{4 x^2} x+\frac {625 e^{20+4 x-\frac {4 x^2}{25}} \left (25 x-2 x^2\right )}{(25-2 x) x^4}-\frac {500 e^{15+3 x+\frac {22 x^2}{25}} \left (75 x+44 x^2\right )}{x^3 (75+44 x)}+\frac {150 e^{10+2 x+\frac {48 x^2}{25}} \left (25 x+48 x^2\right )}{x^2 (25+48 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 34, normalized size = 1.17 \begin {gather*} \frac {e^{-\frac {4 x^2}{25}} \left (-5 e^{5+x}+e^{\frac {26 x^2}{25}} x\right )^4}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.60, size = 71, normalized size = 2.45 \begin {gather*} \frac {{\left (x^{4} - 20 \, x^{3} e^{\left (-\frac {26}{25} \, x^{2} + x + 5\right )} + 150 \, x^{2} e^{\left (-\frac {52}{25} \, x^{2} + 2 \, x + 10\right )} - 500 \, x e^{\left (-\frac {78}{25} \, x^{2} + 3 \, x + 15\right )} + 625 \, e^{\left (-\frac {104}{25} \, x^{2} + 4 \, x + 20\right )}\right )} e^{\left (4 \, x^{2}\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 72, normalized size = 2.48 \begin {gather*} \frac {x^{4} e^{\left (4 \, x^{2}\right )} - 20 \, x^{3} e^{\left (\frac {74}{25} \, x^{2} + x + 5\right )} + 150 \, x^{2} e^{\left (\frac {48}{25} \, x^{2} + 2 \, x + 10\right )} - 500 \, x e^{\left (\frac {22}{25} \, x^{2} + 3 \, x + 15\right )} + 625 \, e^{\left (-\frac {4}{25} \, x^{2} + 4 \, x + 20\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.12, size = 69, normalized size = 2.38
method | result | size |
risch | \(x \,{\mathrm e}^{4 x^{2}}-20 \,{\mathrm e}^{5+x +\frac {74}{25} x^{2}}+\frac {150 \,{\mathrm e}^{2 x +10+\frac {48}{25} x^{2}}}{x}-\frac {500 \,{\mathrm e}^{15+3 x +\frac {22}{25} x^{2}}}{x^{2}}+\frac {625 \,{\mathrm e}^{20+4 x -\frac {4}{25} x^{2}}}{x^{3}}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 72, normalized size = 2.48 \begin {gather*} \frac {x^{4} e^{\left (4 \, x^{2}\right )} - 20 \, x^{3} e^{\left (\frac {74}{25} \, x^{2} + x + 5\right )} + 150 \, x^{2} e^{\left (\frac {48}{25} \, x^{2} + 2 \, x + 10\right )} - 500 \, x e^{\left (\frac {22}{25} \, x^{2} + 3 \, x + 15\right )} + 625 \, e^{\left (-\frac {4}{25} \, x^{2} + 4 \, x + 20\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.24, size = 68, normalized size = 2.34 \begin {gather*} \frac {625\,{\mathrm {e}}^{-\frac {4\,x^2}{25}+4\,x+20}}{x^3}-20\,{\mathrm {e}}^{\frac {74\,x^2}{25}+x+5}-\frac {500\,{\mathrm {e}}^{\frac {22\,x^2}{25}+3\,x+15}}{x^2}+\frac {150\,{\mathrm {e}}^{\frac {48\,x^2}{25}+2\,x+10}}{x}+x\,{\mathrm {e}}^{4\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.86, size = 90, normalized size = 3.10 \begin {gather*} x e^{4 x^{2}} + \frac {\left (- 20 x^{6} e^{\frac {78 x^{2}}{25}} e^{x + 5} + 150 x^{5} e^{\frac {52 x^{2}}{25}} e^{2 x + 10} - 500 x^{4} e^{\frac {26 x^{2}}{25}} e^{3 x + 15} + 625 x^{3} e^{4 x + 20}\right ) e^{- \frac {4 x^{2}}{25}}}{x^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________